# Trio Motion Technology Sigma II SERCOS Interface Users Manual

**Trio Product Code P730** 



### References

- 1. Specification SERCOS Interface, version 2.2. (November 2001)
- 2. Sigma II Series Servo System User's Manual, manual number: YEA-SIA-S800-32.2D. (February 2002)

## **Definitions and Abbreviations**

| AT<br>CP0,1,2,3,4 | : Amplifier (slave drive ) Telegram<br>: SERCOS Communication Phase 0,1,2,3,4 |
|-------------------|-------------------------------------------------------------------------------|
| FO                | : Fibre Optic                                                                 |
|                   | •                                                                             |
| MDT               | : Master Data Telegram                                                        |
| MST               | : Master Synchronisation Telegram                                             |
| RTC               | : MDT Real Time Control Bit                                                   |
| RTS               | : AT Real Time Status Bit                                                     |
| SERCOS            | : SErial Real-time COmmunication System Interface                             |
| Telegram          | : communication message                                                       |

# **Modification Status**

| Date                      | Description                                                                                                                                                                                                                                                                                                                                                                                       | Manual<br>Version |
|---------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|
| 4th Mar 2009              | Rotational and linear preferred scaling use new control algorithm.                                                                                                                                                                                                                                                                                                                                | 1.8               |
|                           | Linear Data Scaling calibration - Manufacturer IDN<br>49664 (P-4-0512) defines the number of encoder<br>edges. IDN 49665 (P-4-0513) defines the number of<br>preferred units. The ratio is encoder edges/preferred<br>units. The default is 8192:8192, which is the same as<br>no data scaling. 1:1 ratio.<br>(Firmware release v00.00.33)                                                        |                   |
| 18th Dec 2007             | The Velocity Feedback IDN S-0-0040 now returns the change in the number of edges per msec.<br>Changed IDN S-0-0189 to show use of the drive's FE value instead of calculating from the setpoint/feedback difference.<br>Homing procedure can now be interrupted by clearing bit 1 of the command control IDN S-0-0148.<br>Added IDN S-0-0058 (reversal clearance)<br>(Firmware release v00.00.30) | 1.7               |
| 1 <sup>st</sup> Oct 2007  | Added Proprietary parameters IDN P-4-0512 and IDN P-<br>4-0513 for support of ALPHA release Linear Preferred<br>Scaling. (Firmware release v0.0.28)                                                                                                                                                                                                                                               | 1.7               |
| 26 <sup>th</sup> Jan 2007 | Corrected IDN 00076 parameters, support for the pack<br>profile (including preferred data scaling), and further<br>support for drive controlled homing. New IDNs S41,<br>S42, S147, S148, and proprietary IDNs 0xC100-0xC103<br>(Firmware release v0.0.21)                                                                                                                                        | 1.6               |
| 23 <sup>rd</sup> Jan 2006 | Description of the support for drive controlled homing added in firmware version 0.0.14.                                                                                                                                                                                                                                                                                                          | 1.5               |
| 12 <sup>th</sup> Mar 2004 | Modulo value added – firmware v0.0.10                                                                                                                                                                                                                                                                                                                                                             | 1.5               |
| 8 <sup>th</sup> Sept 2003 | Absolute encoder support added – firmware version 0.0.9                                                                                                                                                                                                                                                                                                                                           | 1.4               |
| 6 <sup>th</sup> Aug 2003  | Registration Support added.                                                                                                                                                                                                                                                                                                                                                                       | 1.3               |
| 14 <sup>th</sup> Feb 2003 | Brief SERCOS Interface Specification description added                                                                                                                                                                                                                                                                                                                                            | 1.2               |
| 10 <sup>th</sup> Feb 2003 | Support for Probe IDNs added                                                                                                                                                                                                                                                                                                                                                                      | 1.1               |
| 14 <sup>th</sup> Nov 2002 | Initial Issue                                                                                                                                                                                                                                                                                                                                                                                     | 1.0               |

# **Table of Contents**

| Trio Motion Technology Sigma II SERCOS Interface Users Manual                                                                              | 1 |
|--------------------------------------------------------------------------------------------------------------------------------------------|---|
| References                                                                                                                                 |   |
| Definitions and Abbreviations                                                                                                              |   |
| Modification Status                                                                                                                        |   |
| Table of Contents                                                                                                                          |   |
| Introduction                                                                                                                               |   |
| Front Panel Specification                                                                                                                  |   |
| Drive SERCOS Baud Rate                                                                                                                     |   |
| Drive SERCOS optical output adjust                                                                                                         |   |
| Test Mode                                                                                                                                  |   |
| Drive Address Rotary Switches                                                                                                              |   |
| Phase and Drive Status LEDs                                                                                                                |   |
| SERCOS Loop Error LED                                                                                                                      |   |
| SERCOS Interface Specification                                                                                                             |   |
| Installation and Commissioning                                                                                                             |   |
| Drive Configuration                                                                                                                        |   |
| SERCOS Interface Specification Conformance                                                                                                 |   |
| Abbreviation                                                                                                                               |   |
| Compliance                                                                                                                                 |   |
| Reading and Writing Yaskawa Drive Parameters                                                                                               |   |
| Registration (Probe) Support                                                                                                               |   |
| Example TrioBASIC programs                                                                                                                 |   |
| Drive Controlled Homing                                                                                                                    |   |
| Drive controlled homing requirements                                                                                                       |   |
| Drive controlled homing Notes.                                                                                                             |   |
| Drive controlled homing Fault Finding                                                                                                      |   |
| Drive controlled homing example program<br>Appendix A –SERCOS IDN Specification                                                            |   |
|                                                                                                                                            |   |
| IDN S-0-0001 Control Unit (NC) Cycle Time (tNcyc)<br>IDN S-0-0002 SERCOS Communication Cycle Time (tScyc)                                  |   |
| IDN S-0-0002 SERCOS Communication Cycle Time (tScyc)<br>IDN S-0-0003 Shortest AT Transmission Start Time (t1min) – Read only               |   |
| IDN S-0-0005 Shortest AT Transmission Start Time ((Timin) – Read only<br>IDN S-0-0004 Transmit/Receive transition time (Tatmt) – Read only |   |
| IDN S-0-0004 Traisinit/Receive transition time (Taunt) – Read only<br>IDN S-0-0005 Minimum Feedback Processing Time (t5) – Read only       |   |
| IDN S-0-0006 AT Transmission Starting Time (t1)                                                                                            |   |
| IDN S-0-0007 Feedback Acquisition Capture Point (t4)                                                                                       |   |
| IDN S-0-0007 Freedback Acquisition Capture Fond (14)                                                                                       |   |
| IDN S-0-0009 Position of Data Record in MDT                                                                                                |   |
| IDN S-0-0010 Length of MDT                                                                                                                 |   |
| IDN S-0-0011 Class 1 Diagnostics                                                                                                           |   |
| IDN S-0-0012 Class 2 Diagnostics                                                                                                           |   |
| IDN S-0-0012 Class 2 Diagnostics                                                                                                           |   |
| IDN S-0-0014 Interface Status.                                                                                                             |   |
| IDN S-0-0015 Telegram Type                                                                                                                 |   |
| IDN S-0-0016 AT Configuration List                                                                                                         |   |
| IDN S-0-0017 IDN List of all Operation Data                                                                                                |   |
| IDN S-0-0018 IDN List of Operation Data for CP2                                                                                            |   |
| IDN S-0-0019 IDN List of Operation Data for CP3                                                                                            |   |
| IDN S-0-0021 IDN List of Invalid Operation Data for CP2                                                                                    |   |

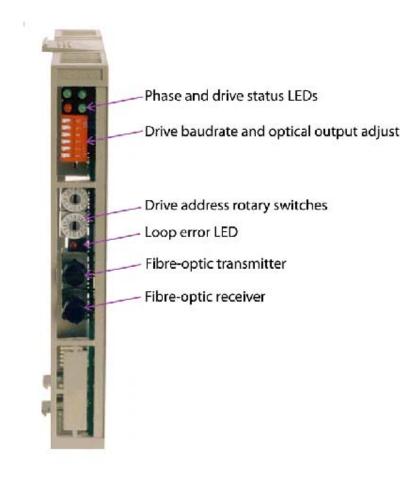
|                                                                              | 26       |
|------------------------------------------------------------------------------|----------|
| IDN S-0-0022 IDN List of Invalid Operation Data for CP3                      |          |
| IDN S-0-0024 MDT Configuration List                                          |          |
| IDN S-0-0025 IDN List of all Procedure Commands                              |          |
| IDN S-0-0028 MST Error Counter                                               |          |
| IDN S-0-0029 MDT Error Counter                                               |          |
| IDN S-0-0030 Manufacturer Version                                            |          |
| IDN S-0-0032 Primary Operation Mode                                          |          |
| IDN S-0-0033 Secondary Operation Mode                                        |          |
| IDN S-0-0036 Velocity Command Value                                          |          |
| IDN S-0-0040 Velocity Feedback Value 1                                       |          |
| IDN S-0-0041 Homing Velocity                                                 |          |
| IDN S-0-0042 Homing Acceleration                                             | 40       |
| IDN S-0-0043 Velocity Polarity Parameter                                     | 40       |
| IDN S-0-0044 Velocity Data Scaling Type                                      | 40       |
| IDN S-0-0045 Velocity Data Scaling Factor                                    |          |
| IDN S-0-0046 Velocity Data Scaling exponent                                  |          |
| IDN S-0-0047 Position Command Value                                          | 42       |
| IDN S-0-0051 Position Feedback Value 1                                       |          |
| IDN S-0-0052 Reference Distance 1                                            |          |
| IDN S-0-0054 Reference Distance 2                                            |          |
| IDN S-0-0055 Position Polarity Parameter                                     |          |
| IDN S-0-0057 Position Vindow                                                 | 13<br>44 |
| IDN S-0-0058 Reversal Clearance.                                             |          |
| IDN S-0-0076 Position Data Scaling Type                                      |          |
| IDN S-0-0077 Linear Position Data Scaling Fype                               |          |
| IDN S-0-0077 Elitear Position Data Scaling Factor                            |          |
| IDN S-0-0078 Elliear Fostion Data Scaling Exponent                           |          |
| IDN S-0-0080 Torque Command Value                                            |          |
| IDN S-0-0084 Torque Peeuback Value                                           |          |
|                                                                              |          |
| IDN S-0-0086 Torque/force Data Scaling Type                                  |          |
| IDN S-0-0087 Transmit to Transmit Recovery Time $(t_{ATAT})$                 |          |
| IDN S-0-0088 Receive to Receive Recovery Time $(t_{MTSY})$ – read only       |          |
| IDN S-0-0089 MDT Transmission Starting Time (t <sub>2</sub> )                | 49       |
| IDN S-0-0090 Command Value Proceeding (processing) Time (t <sub>MTSG</sub> ) |          |
| IDN S-0-0091 Bipolar velocity limit value                                    |          |
| IDN S-0-0092 Bipolar torque limit value                                      |          |
| IDN S-0-0095 Diagnostic Message                                              |          |
| IDN S-0-0096 Slave Arrangement                                               |          |
| IDN S-0-0097 Mask for Class 2 Diagnostics                                    |          |
| IDN S-0-0098 Mask for Class 3 Diagnostics                                    |          |
| IDN S-0-0099 Reset Class 1 Diagnostics                                       | 52       |
| IDN S-0-0103 Modulo value                                                    | 52       |
| IDN S-0-0104 Position Loop K <sub>v</sub> factor                             |          |
| IDN S-0-0123 Feed Constant                                                   |          |
| IDN S-0-0124 Standstill Window                                               |          |
| IDN S-0-0125 Velocity Threshold (n <sub>x</sub> )                            | 53       |
| IDN S-0-0127 CP3 Transition Check                                            |          |
| IDN S-0-0128 CP4 Transition Check                                            |          |
| IDN S-0-0129 Manufacturer Class 1 Diagnostics                                |          |
| IDN S-0-0130 Probe 1 Positive Edge Value                                     |          |
| 5                                                                            |          |

|                                                                                                        | 50       |
|--------------------------------------------------------------------------------------------------------|----------|
| IDN S-0-0131 Probe 1 Negative Edge Value                                                               |          |
| IDN S-0-0134 Master Control Word                                                                       |          |
| IDN S-0-0135 Drive Status Word.                                                                        |          |
| IDN S-0-0138 Bipolar Acceleration limit value                                                          |          |
| IDN S-0-0140 Controller Type                                                                           |          |
| IDN S-0-0141 Motor Type                                                                                |          |
| IDN S-0-0142 Application Type<br>IDN S-0-0143 SERCOS Interface Version                                 |          |
| IDN S-0-0145 SERCOS Interface Version<br>IDN S-0-0147 Homing Parameter                                 |          |
| IDN S-0-0147 Holding Parameter<br>IDN S-0-0148 Drive Controlled Homing Procedure Command               |          |
| IDN S-0-0148 Drive Controlled Holling Procedure Continuand                                             |          |
| IDN S-0-0150 Reference offset 2                                                                        |          |
|                                                                                                        |          |
| IDN S-0-0157 Velocity Window<br>IDN S-0-0159 Monitoring Window                                         |          |
| IDN S-0-0159 Monitoring window<br>IDN S-0-0160 Acceleration Data Scaling Type                          |          |
| IDN S-0-0160 Acceleration Data Scaling Type<br>IDN S-0-0169 Probe Control Parameter                    |          |
| IDN S-0-0109 Probe Control Parameter<br>IDN S-0-0170 Probing Cycle Procedure Command                   |          |
| IDN S-0-0170 Probing Cycle Procedure Command                                                           | 05<br>64 |
|                                                                                                        |          |
| IDN S-0-0181 Manufacturer Class 2 Diagnostics                                                          |          |
| IDN S-0-0185 Max length of configurable data in the AT                                                 |          |
| IDN S-0-0186 Max length of configurable data in the MDT                                                |          |
| IDN S-0-0187 IDN List of Configurable Data in the AT                                                   |          |
| IDN S-0-0188 IDN List of Configurable Data in the MDT.                                                 |          |
| IDN S-0-0189 Following Distance                                                                        |          |
| IDN S-0-0206 Drive on delay time.                                                                      |          |
| IDN S-0-0207 Drive off delay time                                                                      |          |
| IDN S-0-0300 Real Time Control (RTC) Bit 1<br>IDN S-0-0301 Allocation of Real Time Control (RTC) Bit 1 |          |
| IDN S-0-0301 Anocation of Real Time Control (RTC) Bit 1                                                |          |
| IDN S-0-0302 Real Time Control (RTC) Bit 2<br>IDN S-0-0303 Allocation of Real Time Control (RTC) Bit 2 |          |
| IDN S-0-0305 Anocation of Real Time Control (RTC) Bit 2                                                |          |
| IDN S-0-0305 Real Time Status (RTS) Bit 1 Allocation                                                   |          |
| IDN S-0-0305 Real Time Status (RTS) Bit 1 Anocation<br>IDN S-0-0306 Real Time Status (RTS) Bit 2       |          |
| IDN S-0-0307 Real Time Status (RTS) Bit 2<br>IDN S-0-0307 Real Time Status (RTS) Bit 2 Allocation      |          |
| IDN S-0-0307 Real Time Status (RTS) Bit 2 Allocation<br>IDN S-0-0376 Baud Rate                         |          |
|                                                                                                        |          |
| IDN S-0-0390 Diagnostic Number                                                                         |          |
| IDN S-0-0400 Home Switch                                                                               |          |
| IDN S-0-0401 Probe 1<br>IDN S-0-0403 Position value Feedback status                                    |          |
|                                                                                                        |          |
| IDN S-0-0405 Probe 1 Enable<br>IDN S-0-0407 Home Enable                                                |          |
|                                                                                                        |          |
| IDN S-0-0409 Probe 1 Positive Edge Latched Status                                                      |          |
| IDN S-0-0410 Probe 1 Negative Edge Latched Status                                                      |          |
| IDN P-4-0000 (49152) Encoder Type<br>IDN P-4-0001 (49153) DIP Switch Status                            |          |
| IDN P-4-0001 (49153) DIP Switch Status<br>IDN P-4-0002 (49154) Software Reset                          |          |
| IDN P-4-0002 (49134) Software Reset<br>IDN P-4-0100 (49252) Probe 1 Trigger Input                      |          |
| IDN P-4-0100 (49232) Probe 1 Trigger input<br>IDN P-4-0256 (49408) Homing Mode                         |          |
|                                                                                                        |          |
| IDN P-4-0257 (49409) Homing Home Switch Input                                                          |          |
| IDN P-4-0258 (49410) Homing Creep Velocity                                                             |          |

| IDN P-4-0259 (49411) Homing Time Constant                     | 78 |
|---------------------------------------------------------------|----|
| IDN P-4-0512 (49664) Linear position data scaling numerator   |    |
| IDN P-4-0513 (49665) Linear position data scaling denominator |    |
| Drive Monitor Modes                                           |    |
| Software History                                              | 80 |
|                                                               |    |

# Introduction

This document describes the specification of the P730 Sigma II SERCOS Interface, its compliance with the SERCOS specification, and the procedures for commissioning the module.


The SERCOS interface uses optical data transmission between control units and drives. The P730 SERCOS Interface provides a SERCOS network interface for the Yaskawa Sigma II drives.

Please see reference (1) for further information concerning the SERCOS Interface Specification. Please see reference (2) for further information about the Sigma II drives.

#### **Front Panel Specification**

The front panel contains the SERCOS communication phase and error status LEDs, the network baud rate and intensity switches, the drive address rotary switches, the SERCOS network loop error LED and the SERCOS FO connectors.

It is necessary to cycle power to the drive after changing any switch positions before the new values will be used.



# **Drive SERCOS Baud Rate**

DIP switches 1 and 2 are used to select the SERCOS baud rate, and should be set according to the following table:

| Switch 1 | Switch 2 | Baud rate        |
|----------|----------|------------------|
| OFF      | OFF      | 2 Mbps (default) |
| ON       | OFF      | 4 Mbps           |
| OFF      | ON       | 8 Mbps           |
| ON       | ON       | 16 Mbps          |

# **Drive SERCOS optical output adjust**

DIP switches 3,4, and 5 are used to select the fibre optic light intensity level, and should be set according to the following table:

| Switch 3 | Switch 4 | Switch 5 | Intensity level  |
|----------|----------|----------|------------------|
| OFF      | OFF      | OFF      | 0 (HZ TX output) |
| ON       | OFF      | OFF      | 1 (low)          |
| OFF      | ON       | OFF      | 2                |
| ON       | ON       | OFF      | 3 (default)      |
| OFF      | OFF      | ON       | 4                |
| ON       | OFF      | ON       | 5                |
| OFF      | ON       | ON       | 6 (high)         |
| ON       | ON       | ON       | 7 (not used)     |

### **Test Mode**

DIP switch 6 is used to select a test mode. If this switch is set to on when the drive is powered on, the SERCOS Interface module will enter the 'zero bit stream' test mode. Whilst the module is in this test mode the red fault LED will flash. To return to normal operating mode, switch 6 must be set to the off position and the drive power cycled.

# **Drive Address Rotary Switches**

The two hexadecimal rotary switches are used to set the drive SERCOS network address (0 to 254). The most significant hex digit is set by the '16x' switch, and the least significant by the '1x' switch. Each drive on the SERCOS network must have a unique address.

| MS Switch                        | LS Switch | SERCOS address |  |  |  |
|----------------------------------|-----------|----------------|--|--|--|
| 0                                | 0         | 0*             |  |  |  |
| 0                                | 1         | 1              |  |  |  |
| 0                                | 2         | 2              |  |  |  |
|                                  |           |                |  |  |  |
|                                  |           |                |  |  |  |
|                                  |           | -              |  |  |  |
|                                  |           |                |  |  |  |
|                                  |           |                |  |  |  |
| F                                | D         | 253            |  |  |  |
| F                                | E         | 254            |  |  |  |
| F                                | F         | 255**          |  |  |  |
| *Decomined for repeater use only |           |                |  |  |  |

\*Reserved for repeater use only.

\*\*Not allowed for SERCOS drive address.

# Phase and Drive Status LEDs

The communication phase and error status LEDs indicate in which phase the drive is operating, and whether it has identified an error. The drive phase shall be the same as the network phase, unless the drive has identified an error and reset to CP0. All three green LEDs shall be illuminated when in CP4, and shall remain on permanently if the drive is enabled, or flash if the drive is not enabled.

| Indicator              | CP0 | CP1 | CP2 | CP3 | CP4       | Enable | ERROR |
|------------------------|-----|-----|-----|-----|-----------|--------|-------|
| Top right green LED    | ON  | OFF | ON  | OFF | ON(blink) | ON     | Х     |
| Top left green LED     | OFF | ON  | ON  | OFF | ON(blink) | ON     | Х     |
| Bottom right green LED | OFF | OFF | OFF | ON  | ON(blink) | ON     | Х     |
| Bottom left red LED    | Х   | Х   | Х   | Х   | Х         | Х      | ON    |

# SERCOS Loop Error LED

The RED LED is ON if there is a **distortion problem** or if the **fibre optic loop** is open.

#### **SERCOS Interface Specification**

The SERCOS Specification defines a real-time optical serial communication standard between a single master and one or more slave drives on a network ring, transmitting periodic and non-periodic control and status information.

During initialisation the operation of the network is defined by the master according to the performance capabilities of itself and that of the slaves on the network.

Following power-on, the network passes through several states (communication phases (CP)) before reaching the normal operating state (phase 4). Default timing parameters are used in the first 3 states, during which the master transmits configuration information to each slave drive.

The communication phases are:

CPO – The master starts to transmit the periodic synchronization clock telegram (MST), which is repeated by each drive in the ring after it has successfully completed its poweron initialisation. The master is able to determine the network ring has been closed when it simultaneously receives its transmitted MST message. The master moves the ring to phase 1 after ensuring the ring has been successfully closed. Each SERCOS communication cycle starts with the MST which is received by all slave drives concurrently. This message is used to synchronize the telegram transmission times within the cycle, and the slave drives internal processing and control loops. The MST also identifies the required ring phase.

CP1 – During CP1 and CP2 the master addresses each drive individually, via a telegram (MDT) message containing a single data record with control information for the slave being addressed. The slave will transmit a telegram (AT) message containing status information in reply, only when it is ready to move to phase 2. Hence, the master addresses each drive in the ring until it has a valid response and is able to determine the ring is ready to move to phase 2.

CP2 – In this phase the master transmits communication (telegram transmission times and timeslots) and the cyclic transmission configuration parameters (used in phases 3 and 4). The drive configuration parameters may be transmitted during this or phase 3. Having configured all the drive communication parameters, the master sends the procedure command 'CP3 transition check' to each drive. The drives run internal checks to ensure they have received all the information required to operate in phase 3. After each drive has responded with the 'procedure command correctly executed', the master moves the ring into phase 3.

CP3: In phase 3 the master and all the slaves in the ring transmit their respective telegram messages every cycle time, using the timeslot information received in the previous phase. The master telegram (MDT) now contains a data record for each slave in the ring, enabling the master to exchange information with each drive simultaneously. Hence, it is possible to configure all the drives in the ring in a more time efficient manner.

Before moving the phase 4, the master sends the procedure command 'CP4 transition check' to each drive, which runs internal checks to ensure it has received all the information it requires to operate in phase 4. After every drive has responded with the 'procedure command correctly executed', the master moves the ring into phase 4.

CP4: Phase 4 is the normal operating state of the ring. Every cycle time the master transmits control information to each drive in the ring, which responds with its status – including motion feedback information. The master is now free to enable the drives and send positioning information.

#### **Installation and Commissioning**

Set the required SERCOS network drive address, baud rate and intensity using the front panel switches (refer to Front Panel Specification section).

During CP2 the SERCOS network master must write the timing parameter IDNs for the cyclic phases (CP3 & CP4) to the drive.

| SERCOS IDN | Description                    |  |
|------------|--------------------------------|--|
|            |                                |  |
| 00002      | SERCOS interface cycle time    |  |
| 00006      | AT transmission starting time  |  |
| 00089      | MDT transmission starting time |  |
| 00009      | Position of data record in MDT |  |
| 00010      | Length of MDT                  |  |
| 00015      | Telegram Type Parameter        |  |
|            |                                |  |

If all the parameters in the above table are not configured during CP2 the Sigma II Interface will not pass the CP3 transition check (IDN 127).

#### **Drive Configuration**

The drive will operate in position, velocity, torque, or velocity with torque feed forward control modes, using the standard or appropriately defined application telegrams.

To use the velocity (V-REF) with torque feed forward (T-REF) control mode the drive's operation mode and telegram configuration SERCOS parameters should be configured as given in the table below.

| IDN   | IDN Description        | Value | Notes                            |
|-------|------------------------|-------|----------------------------------|
|       |                        |       |                                  |
| 00015 | Telegram type          | 7     | Application Telegram             |
| 00024 | MDT Configuration List | 36,80 | Velocity & torque command values |
| 00032 | Primary Mode of        | 2     | Velocity control mode            |
|       | Operation              |       |                                  |

The drive parameters Pn000.1 should be set to 9 (speed control method), Pn002.0 should be set to 2 (T-REF used for torque feed forward), and Pn400 (torque feed forward gain) should be a non-zero value.

#### **SERCOS Interface Specification Conformance**

The Sigma II Interface module satisfies SERCOS Interface Specification compliance class B in velocity or position control mode, and can run at SERCOS cycle times of 500usec and above.

SERCOS data transmissions occur in regular cycles. The cycle timing is controlled by the SERCOS master, which transmits a Master Synchronization Telegram (MST) at the start of each cycle. When the ring is up and running, the drives will each transmit an Amplifier Telegram (AT) to the master, and finally the Master will transmit its Data Telegram (MDT) which contains information for each drive.

MST-AT is t1(IDN6) MST-MDT is t2(IDN89) MST-MST is tscyc (IDN2) After MDT to MST is tmtsy (IDN88)

A summary of the Standard SERCOS IDNs supported by the P730 is shown in the table below, and a more complete discussion of these IDNs appears in Appendix A. Not all IDNs in the list have a function in the P730; some are provided for easy integration with the SERCOS master but are not used within the P730.

The compliance column indicates which SERCOS interface specification compliance class the parameter belongs and the control mode (position, velocity or torque) where appropriate. The comments indicate whether the network master has read only (R) or read-write (RW) access.

| IDN   | Description                            | Abbreviation      | Compliance   | Comment |
|-------|----------------------------------------|-------------------|--------------|---------|
| 00001 | Control Unit Cycle Time                | t <sub>Ncyc</sub> | B (position) |         |
| 00002 | Communication Cycle<br>Time            | t <sub>Scyc</sub> | A            | RW      |
| 00003 | Shortest AT transmission starting time | t <sub>1min</sub> | A            | R       |
| 00004 | Transmit/receive transition time       | t <sub>atmt</sub> | A            | R       |
| 00005 | Minimum feedback<br>processing time    | t <sub>5</sub>    | В            | R       |
| 00006 | AT transmission starting time          | t <sub>1</sub>    | A            | RW      |
| 00007 | Feedback acquisition<br>capture point  | t <sub>4</sub>    | В            | RW      |
| 00008 | Command value valid time               | t <sub>3</sub>    | В            | RW      |
| 00009 | Position of data record in MDT         |                   | A            | RW      |
| 00010 | Length of MDT                          |                   | Α            | RW      |
| 00011 | Class 1 Diagnostic                     | C1D               | А            | R       |
| 00012 | Class 2 Diagnostic                     | C2D               | В            |         |
| 00013 | Class 3 Diagnostic                     | C3D               | В            |         |
| 00014 | Interface Status                       |                   | Α            | R       |
| 00015 | Telegram Type                          |                   | Α            | RW      |
| 00016 | AT Configuration List                  |                   | С            | RW      |
| 00017 | IDN-list of all operation data         |                   | A            | R       |
| 00018 | IDN-list of operation data for CP2     |                   | A            | R       |
| 00019 | IDN-list of operation data             |                   | А            | R       |

|        | for CP3                      |                   |              |       |
|--------|------------------------------|-------------------|--------------|-------|
| 00021  | IDN-list of invalid          |                   | Α            | R     |
| 00021  | operation data, CP2          |                   |              |       |
| 00022  | IDN-list of invalid          |                   | A            | R     |
|        | operation data, CP3          |                   |              |       |
| 00024  | MDT Configuration List       |                   | С            | RW    |
| 00025  | IDN-list of all procedure    |                   | A            | R     |
|        | commands                     |                   |              |       |
| 00028  | MST error counter            |                   | Α            | R     |
| 00029  | MDT error counter            |                   | A            | R     |
| 00030  | Manufacturer Version         |                   | С            | R     |
| 00032  | Primary operation mode       |                   | A            | RW    |
| 00033  | Secondary operation          |                   | В            | RW    |
|        | mode 1                       |                   | -            |       |
| 00036  | Velocity command value       |                   | B (velocity) | RW    |
| 00040  | Velocity feedback value      |                   | B (velocity) | R     |
| 00041  | Homing Velocity              |                   | B (velocity) | RW    |
| 00042  | Homing Acceleration          |                   | B (position) | RW    |
| 00043  | Velocity polarity            |                   | B (velocity) | RW    |
| 00010  | parameter                    |                   | D (Velocicy) |       |
| 00044  | Velocity data scaling type   |                   | B (velocity) | RW    |
| 00045  | Velocity data scaling        |                   | C            | RW    |
| 00015  | factor                       |                   | C            |       |
| 00046  | Velocity data scaling        |                   | С            | RW    |
| 00010  | exponent                     |                   | C            |       |
| 00047  | Position command value       |                   | B (position) | RW    |
| 00051  | Position feedback value      |                   | B (position) | R     |
| 00051  | Reference distance 1         |                   | B (position) | RW    |
| 00054  | Reference distance 2         |                   | Option       | RW    |
| 00055  | Position Polarity            |                   | B (position) | RW    |
| 000000 | parameter                    |                   |              |       |
| 00057  | Position window              |                   | B (position) | RW    |
| 00058  | Reversal Clearance           |                   | B (position) | RW    |
| 00076  | Position data scaling type   |                   | B (position) | RW    |
| 00077  | Linear position data         |                   | C            | RW    |
| 00077  | scaling factor               |                   | C            |       |
| 00078  | Linear position data         |                   | С            | RW    |
| 00070  | scaling exponent             |                   | C            |       |
| 00080  | Torque command value         |                   | B (torque)   | RW    |
| 00084  | Torque feedback value        |                   | B (torque)   | R     |
| 00085  | Torque polarity parameter    |                   | B (torque)   | RW    |
| 00085  | Torque/force data scaling    | 1                 | B (torque)   | RW    |
| 00000  | type                         |                   | D (torque)   |       |
| 00087  | Transmit to transmit         | SLKN              | A (1)        | R     |
| 00007  | recovery time                | SERI              | //(1)        |       |
| 00088  | Receive to receive           | t <sub>MTSY</sub> | A            | R     |
| 00000  | recovery time                | CMISY             | /            |       |
| 00089  | MDT transmission starting    | t <sub>2</sub>    | А            | RW    |
| 00005  | time                         | <b>C</b> 2        | ~            |       |
| 00090  | Command value                | t <sub>MTSG</sub> | В            | R     |
| 30050  | proceeding time              | 50                |              |       |
| 00091  | Bipolar velocity limit value |                   | B (velocity) | RW    |
| 00092  | Bipolar torque limit value   |                   | B (torque)   | RW    |
| 00095  | Diagnostic Message           |                   | A            | R     |
| 00096  | Slave Arrangement            |                   | A            | R     |
| 00090  | Mask Class 2 diagnostic      |                   | B            | RW    |
| 00097  | Mask Class 2 diagnostic      |                   | B            | RW    |
| 00090  | mask class 5 uldy 10500      | 1                 |              | 1/1/1 |

| 00099 | Reset class 1 diagnostic  | 1              | A            | RW |
|-------|---------------------------|----------------|--------------|----|
| 00103 | Modulo value              |                | C (position) | RW |
| 00104 | Position loop Kv factor   |                | B (position) | RW |
| 00123 | Feed Constant             |                | C (position) | RW |
| 00124 | Standstill window         |                | B (velocity) | RW |
| 00125 | Velocity threshold        | n <sub>x</sub> | B (velocity) | RW |
| 00127 | CP3 transition check      |                | A            | RW |
| 00128 | CP4 transition check      |                | A            | RW |
| 00129 | Manufacturer Class 1      |                |              | R  |
|       | diagnostic                |                |              |    |
| 00130 | Probe value 1 positive    |                | option       | R  |
| 00100 | edge                      |                | 00000        |    |
| 00131 | Probe value 1 negative    |                | option       | R  |
|       | edge                      |                |              |    |
| 00134 | Master Control Word       |                |              | R  |
| 00135 | Drive Status Word         |                |              | R  |
| 00138 | Bipolar accel limit value |                | В            | RW |
| 00140 | Controller type           |                | N/A          | R  |
| 00141 | Motor type                |                | N/A          | R  |
| 00142 | Application type          |                | A            | R  |
| 00143 | SERCOS Interface version  |                | A            | R  |
| 00147 | Homing Parameter          |                | B (position) | RW |
| 00148 | Drive controlled homing   |                | B (position) | RW |
| 00110 | procedure command         |                | D (posicion) |    |
| 00150 | Reference offset 1        |                | B (position) | RW |
| 00151 | Reference offset 2        |                | option       | RW |
| 00157 | Velocity window           |                | B (velocity) | RW |
| 00159 | Monitoring window         |                | B (position) | RW |
| 00160 | Acceleration data scaling |                | B            | RW |
| 00100 | type                      |                |              |    |
| 00169 | Probe control parameter   |                | Option       | RW |
| 00170 | Probe procedure           |                | Option       | RW |
|       | command                   |                | 00000        |    |
| 00179 | Probe position latch      |                | Option       | R  |
|       | status                    |                |              |    |
| 00181 | Manufacturer Class 1      |                | N/A          | R  |
|       | Diagnostics               |                | ,            |    |
| 00185 | Max length of AT          |                | С            | R  |
|       | configurable data         |                |              |    |
| 00186 | Max length of MDT         |                | С            | R  |
|       | configurable data         |                |              |    |
| 00187 | IDN List of Configurable  |                | С            | R  |
|       | Data in the AT            |                |              |    |
| 00188 | IDN List of Configurable  |                | С            | R  |
|       | Data in the MDT           |                |              |    |
| 00189 | Following Distance        |                | B (position) | R  |
| 00206 | Drive on delay time       |                | В            | RW |
| 00207 | Drive off delay time      |                | В            | RW |
| 00300 | Real Time Control bit 1   |                |              | R  |
| 00301 | Allocation of RTC1        |                | B (position) | RW |
| 00302 | Real Time Control bit 2   |                | <u> </u>     | R  |
| 00303 | Allocation of RTC2        |                | B (position) | RW |
| 00304 | Real Time Status bit 1    |                | <u> </u>     | R  |
| 00305 | Allocation of RTS1        |                | B (position) | RW |
| 00306 | Real Time Status bit 2    |                |              | R  |
| 00307 | Allocation of RTS2        |                | B (position) | RW |
| 00507 |                           |                |              |    |

| 00390 | Diagnostic Number               | N/A          | R  |
|-------|---------------------------------|--------------|----|
| 00400 | Home Switch                     | B (position) | R  |
| 00401 | Probe 1 State                   |              | R  |
| 00403 | Position value feedback status  | B (position) | R  |
| 00405 | Probe 1 enable                  |              | RW |
| 00407 | Home Enable                     | option       | RW |
| 00409 | Probe 1 Pos edge latched status | option       | R  |
| 00410 | Probe 1 Neg edge latched status | option       | R  |

Notes

(1) Only for slaves with several drive addresses

#### **Reading and Writing Yaskawa Drive Parameters**

The Yaskawa drive parameters and monitor modes are accessible via the SERCOS network.

Drive parameter numbers (PnXXX) map directly to the base of the product specific SERCOS parameter number range, which starts at address 32768 (0x8000).

The monitor modes (UnXXX) map within the product specific SERCOS parameter number range, starting at address 53248 (0xD000).

Please refer to your Yaskawa drive User's Manual (Ref. 2) for further information about these drive parameters and monitor modes, and to Appendix A for further details of how they map to the SERCOS IDNs.

From Trio BASIC the parameters can be read using the SERCOS command once the SERCOS ring has been initialised to phase 2.

'Read a drive parameter SERCOS(4,slot,drive address, parameter number)

'Write a drive parameter SERCOS(5,slot,drive address, parameter number, format, parameter value)

#### **Registration (Probe) Support**

(Requires firmware 0.0.8 and above, and Motion Coordinator V1.6223 and above)

Functionality provided by the drive and the SERCOS interface board are combined to support high speed registration. To enable this support it is necessary to configure both parameters on the drive and also specific SERCOS IDNs. The TrioBASIC language `mark/regist/reg\_pos' keywords are then used in the application program.

The drive has the ability to latch a position either on the motor z-mark or a rising or falling edge received via an external input. The SERCOS and drive parameters must be configured as shown in the tables below to enable this functionality on the drive. SERCOS IDNs are used to set and reset the latch and read the latched position. These IDNs are reflected in the MDT Real Time Control Bit, AT Real Time Status Bit and the second parameter in the AT data record – hence the latch functionality is controlled via cyclic SERCOS data.

To enable the cyclic data response, the AT telegram must be configured as an application (custom) telegram with two parameters, the second being the probe latched position IDN (either 130 for a rising edge or 131 for a falling edge). On a Motion Coordinator, the axis type must be set to 22 to operate in velocity control mode with latch functionality, or 23 to operate in position control mode with latch functionality.

When the latch has triggered the AT RTS1 and IDN401 are set, and the latched value will be stored in IDN 130 or 131 depending upon the trigger edge. The z mark does not have a trigger edge, but is configured as per the external rising edge.

Note that drive parameter Pn511 is accessed by using SERCOS IDN (32768 + 0x511) since it is classed as a proprietary ( or product specific ) IDN.

| IDN | Value      | Description                                                                                                                                                                                                                                |
|-----|------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|     |            |                                                                                                                                                                                                                                            |
| 301 | 405        | Master Telegram's Real Time Control Bit 1 to be reflected into IDN405 – the Probe 1 Enable/Disable control IDN.                                                                                                                            |
| 305 | 409 or 410 | The Drive Telegram's Real Time Status Bit 1 to reflect<br>the status of either the Probe 1 rising edge or falling<br>edge latch status IDN.                                                                                                |
| 169 | 1 or 2     | The probe control parameter is set to trigger the probe<br>on either a rising (1) or falling (2) edge. This will<br>determine in which IDN the latched value is stored –<br>either IDN 130 for a rising edge or 131 for a falling<br>edge. |

#### SERCOS Parameters

Drive Parameters – Z mark trigger

| Parameter | Digit<br>Place | Name | Setting | Description                                                                  | Default |
|-----------|----------------|------|---------|------------------------------------------------------------------------------|---------|
| Pn511     | 03             |      | 0x8888  | Use only the z-mark, and<br>not any external inputs to<br>trigger the latch. | 8       |

Drive Parameters – External Input

The drive parameter Pn511 is configured to assign a CN1 input to the EXT1/EXT2/EXT3 channel.

| Parameter | Digit<br>Place | Name  | Setting | Description                                                                                                           | Default |
|-----------|----------------|-------|---------|-----------------------------------------------------------------------------------------------------------------------|---------|
| Pn511     | 0              | /DEC  | 0 to F  | /DEC origin search signal<br>mapping.<br>8 : disabled                                                                 | 8       |
|           | 1              | /EXT1 | 0 to F  | 4: assigned to SI4, active<br>high<br>8: disabled                                                                     | 8       |
|           | 2              | /EXT2 | 0 to F  | 5: assigned to SI5, active<br>high<br>8: disabled                                                                     | 8       |
|           | 3              | /EXT3 | 0 to F  | 6: assigned to SI6, active<br>low (falling edge.)<br>F: assigned to SI6, active<br>high (rising edge.)<br>8: disabled | 8       |

The Input Signal Allocation (parameters Pn50A and Pn50B) are configured as appropriate (see Ref 1), and the power cycled to the drive before these changes are effective.

| Parameter | Digit<br>Place | Name                            | Setting | Description                                                                                                                                                                                                                                                                                                                                                                                          | Default |
|-----------|----------------|---------------------------------|---------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|
| Pn50A     | 0              | IO Signal<br>Allocation<br>mode | 1       | 1: Signals maybe<br>freely assigned.<br>0: input signal<br>allocation as per servo<br>amplifier sequence.                                                                                                                                                                                                                                                                                            | 0       |
|           | 1              | /S-ON                           | 0 to F  | 0 :Inputs from the SI0<br>(CN1-40) input<br>terminal<br>1 :Inputs from the SI1<br>(CN1-41) input<br>terminal<br>2 :Inputs from the SI2<br>(CN1-42) input<br>terminal<br>3 :Inputs from the SI3<br>(CN1-43) input<br>terminal<br>4 :Inputs from the SI4<br>(CN1-44) input<br>terminal<br>5 :Inputs from the SI5<br>(CN1-45) input<br>terminal<br>6 :Inputs from the SI6<br>(CN1-46) input<br>terminal | 0: SI0  |

|   |        |        | 7 :Sets signal ON<br>8 :Sets signal OFF<br>9 :Inputs the reverse<br>signal from SI0<br>A :Inputs the reverse<br>signal from SI1<br>B :Inputs the reverse<br>signal from SI2<br>C :Inputs the reverse<br>signal from SI3<br>D :Inputs the reverse<br>signal from SI4<br>E :Inputs the reverse<br>signal from SI5<br>F :Inputs the reverse<br>signal from SI6 |        |
|---|--------|--------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|
| 2 | /P-CON | 0 to F | As above                                                                                                                                                                                                                                                                                                                                                    | 1: SI1 |
| 3 | P-OT   | 0 to F | As above                                                                                                                                                                                                                                                                                                                                                    | 2: SI2 |

| Parameter | Digit<br>Place | Name     | Setting | Description | Default |
|-----------|----------------|----------|---------|-------------|---------|
|           |                |          |         |             |         |
| Pn50B     | 0              | N-OT     | 0 to F  | As above    | 3: SI3  |
|           | 1              | /ALM-RST | 0 to F  | As above    | 4: SI4  |
|           | 2              | /P-CL    | 0 to F  | As above    | 5: SI5  |
|           | 3              | /N-CL    | 0 to F  | As above    | 6: SI6  |

P730 Parameters

| IDN   | Value | Description                                                                  |
|-------|-------|------------------------------------------------------------------------------|
|       |       |                                                                              |
| 49252 | 03    | Configures the latch input, either the z-mark (0) or external input (1,2,3). |
|       |       |                                                                              |

# Example TrioBASIC programs.

1. Drive Configuration.

The following file can be run to configure the drive parameters. *Note that power must be cycled to the drive after setting these parameters.* 

```
' Notes
' EXT1 - tied to CN4
' EXT2 - tied to CN5
' EXT3 - tied to CN6
' Initialise Drive ready for registration.
' NB - power to drive must be cycled after setting these values.
Users Guide Page 20
SERCOS Interface Adapter P730
```

```
' program constants
high = 0
low = 1
slt=0
drv=1
'Trig mode - 0:origin(Z)mark,1:ext1,2:ext2,3:ext3
trig mode = 3
trig edge = high
IF trig mode = 0 THEN
    'Reset
    SERCOS(5, slt, drv, 32768+$511, 2, $8888)
    SERCOS(5,slt,drv,32768+$50A,2,$8100)' Pn50A Input Selections 1
    SERCOS(5,slt,drv,32768+$50B,2,$6548)' Pn50B Input Selections 2
ELSEIF trig_mode=1 THEN
    IF trig edge = high THEN
        'Active high - rising edge.
        SERCOS(5, slt, drv, 32768+$511, 2, $88F8)
    ELSE
        'Active low - falling edge.
        SERCOS (5, slt, drv, 32768+$511, 2, $8848)
    ENDIF
    SERCOS(5,slt,drv,32768+$50A,2,$8881)' Pn50A Input Selections 1
    SERCOS(5,slt,drv,32768+$50B,2,$8888)' Pn50B Input Selections 1
ELSEIF trig mode=2 THEN
    IF trig edge = high THEN
        'Active high - rising edge.
        SERCOS (5, slt, drv, 32768+$511, 2, $8F88)
    ELSE
        'Active low - falling edge.
        SERCOS(5, slt, drv, 32768+$511, 2, $8588)
    ENDIF
    SERCOS(5,slt,drv,32768+$50A,2,$8881)' Pn50A Input Selections 1
    SERCOS(5,slt,drv,32768+$50B,2,$8888)' Pn50B Input Selections 1
ELSEIF trig mode= 3 THEN
    IF trig_edge = high THEN
        'Active high - rising edge.
        SERCOS(5, slt, drv, 32768+$511, 2, $F888)
    ELSE
        'Active low - falling edge.
        SERCOS(5, slt, drv, 32768+$511, 2, $6888)
    ENDIF
    SERCOS(5,slt,drv,32768+$50A,2,$8881)' Pn50A Input Selections 1
    SERCOS(5,slt,drv,32768+$50B,2,$8888)' Pn50B Input Selections 1
ELSE
    'Error
ENDIF
```

All theses settings are stored in the servodrive's Flash EPROM. Therefore it is only necessary to run the above program once after installing a new drive.

2. Drive initialisation.

At each power-up, the following file must then be run to configure the SERCOS parameters. This file must agree with the drive settings (above) as regards rising/falling edge. Subsequently, the TrioBASIC REGIST(1) command can be used to set and enable the latch, MARK used to identify when the latch has triggered, and REG\_POS to read the latched value. These commands use the SERCOS cyclic data.

```
' RTC1 to update IDN 405 (Probe 1 enable/disable)
SERCOS(5, nslot, ndrive, 301, 2, 405)
' IDN 305 : RTS Bit 1 : to trigger on probe 1 latch - either high
' or low status
' IDN 169 : Probe Control Parameter - Set active edge which
' determines which IDN the recorded probe value will be stored in
' (either 130 high or 131 low).
IF trig edge = high THEN
    SERCOS (5, nslot, ndrive, 305, 2, 409)
    SERCOS(5, nslot, ndrive, 169, 2, 1)
    'ensure idn 130 is second parameter in AT telegram.
ELSE
    SERCOS (5, nslot, ndrive, 305, 2, 410)
    SERCOS(5, nslot, ndrive, 169, 2, 2)
    'ensure idn 131 is second parameter in AT telegram.
ENDIF
'Set probe trigger input on drive.
SERCOS(5,nslot,ndrive,49252,2,trig_mode)
```

#### 3. Registration process

The TrioBASIC registration functions can be used in the usual way except that the mode cannot be changed from the one initialised. I.e. if external input falling edge was selected and set up in the drive, this will always be the registration mode for the axis. The actual value of n placed in the REGIST(n) command therefore does not matter. (it is not used by the function)

Here is a typical TrioBASIC registration sequence:

```
' Arm the registration function
REGIST(1)
' wait for active registration event
WAIT UNTIL MARK
' obtain the captured (probe) position
captured posn = REG POS
```

#### **Drive Controlled Homing**

(Requires firmware 0.0.21 and above.)

The drive supports drive controlled homing profiles according to the SERCOS specification, however there are deviations from the standard with respect to IDN scaling and also specific configuration requirements. These are discussed below.

During drive controlled homing, the drive enters an internal position control mode and homes the drive. Whilst the command is running, and until the command is cancelled, the drive will not respond to position control commands issued by the control unit.

The drive shall set the procedure command change bit (bit 5 of the status word) when homing has been completed. The control unit must then read the position feedback and update the position command accordingly before cancelling the procedure command. When the command is cancelled, position control will return to the control unit.

The exact homing profile followed is determined by the Homing Mode (IDN 49408), and the Homing Parameter (IDN 00147). The latter defines whether the drive evaluates a home switch and/or the z-mark.

There are currently two homing profiles defined within the module - and selected using Homing Mode (IDN 49408). In the Standard Mode, the drive moves at the homing velocity until it hits the external switch, and then slows to the creep velocity and continues to move in the same direction until it hits the z-mark. This profile can be modified to use only the external switch or only the z-mark, as defined by the appropriate flags in the homing parameter (IDN S-00147). Bits 6 and 5 in IDN 0147 define whether the external switch and z-mark respectively are used during the homing sequence.

In the second mode, called 'Special 1', the drive moves at the 'homing velocity' until it hits the external switch. It then changes direction and reverses off the switch at the creep velocity, and then changes direction again and moves forward until it sees the z-mark.

The 'homing velocity' is a standard SERCOS IDN (S-00041) whose units are defined as '256th encoder edge per msec'. The 'creep velocity' is a proprietary IDN (number 49410, IDN P-4-258), which uses the same units.

The drive shall set the Home Switch (IDN 00400) when this switch is recognized, and the Position Value Feedback Status (IDN 00403) when the origin (z-mark) is recognized.

# **Drive controlled homing requirements**

1. For the drive to run this homing procedure command it must have been configured in position control mode. The SERCOS ring must have been raised into the normal operations (CP4) mode, and the drive enabled.

2. The drive's parameter Pn511 must be configured to support the required trigger input(s) – z-mark and/or external input. Drive Parameters Pn50A and Pn50B must be configured if an external input is required. Refer to the 'Registration' section for details about these parameters.

3. The standard SERCOS homing IDNs must be set as required, including the Homing Parameter (IDN 00147), Homing Velocity (IDN 00041) and Homing Acceleration (IDN 00042). The Reference Distance 1 (IDN 00052), and Reference Offset 1 (IDN 00152) should also be set if non-zero values are required. The Homing Procedure Command (IDN

00148) is then run to execute the homing. See Appendix A for further details of these IDNs.

4. The proprietary SERCOS homing IDNs must be set as required, including the Homing Mode (IDN 49408), Homing Trigger Input (IDN 49409) and Homing Creep Velocity (IDN 49410). See Appendix A for further details of these IDNs.

5. The SERCOS Homing Velocity (IDN 00041) and Homing Creep Velocity (IDN 49410) employ units of in 256<sup>th</sup> encoder edges per msec, and Homing Acceleration (IDN 00042) of 256<sup>th</sup> encoder edges per msec<sup>2</sup>.

6. The probe procedure command must not be run simultaneously with the drive controlled homing procedure command.

#### **Drive controlled homing Notes**

1. IDN 0403 is reset to 0 when drive controlled homing is started, and set high when the drive has been homed. IDN 0400 is set high when the home switch has been seen during homing.

### **Drive controlled homing Fault Finding**

 The required homing profile is to move to the external switch and then onto the zmark. However, the drive moves to the external switch but then stops and remains stationary – it does not move onto the z-mark.

Check : that both the 'evaluation of the home switch '(bit 5) and 'evaluation of the 'position feedback marker pulse' (bit 6) in the homing parameter IDN (s-00147) are both zero.

Check : that the 'creep velocity' IDN number 49410 (IDN P-4-258) is not zero.

#### Drive controlled homing example program

Example TrioBASIC program for controlling drive controlled homing.

```
Program: Homing Test Program
Date : 6th Dec 2006
Description :
Drive controlled homing, to be used with the P730 v0.0.21 firmware
and above.
Standard Homing IDNs :
Standard Homing velocity - 256th encoder edge per msec
- hence if home speed is in revs per sec, use algorithm
- S41 = home_speed*(enc_resolution/1000)*256
S42 - home accel = 256th encoder edge per msec*msec
S147 - Homing Parameter
- 0x00 : clockwise homing direction
- 0x01 : ccw homing direction
```

```
- 0x20 : do not evaluate the home switch
       - 0x40 : do not evaluate the z mark
' S52 - Ref Dist 1
' S150 - Ref Offset 1
' S403 - homing status
      - 0 : homing
.
       - 1 : homed
' S148 - drive controlled homing procedure command
' Propietary Homing IDNs :
' S0xC100 - Homing Mode
.
          - 0 : standard
.
          - 1 : special profile 1
' S0xC101 - Homing input
.
          - Options 0:SI0,1:SI2, ... ,6:SI6
' S0xC102 - Homing Creep velocity (units as above)
' S0xC103 - Time constant
' Homing modes :
' Standard
' Drive moves until hits switch, and then slows to creep velocity and
' continues to move in the same direction until it hits the z-mark.
' Note that whether the z-mark and/or switch are evaluated is defined
' by the homing parameter (S147).
' Special 1:
' Drive moves until hits switch at homing velocity. It then changes
' direction and reverses off at creep velocity, and then changes
' direction and moves forward until it sees the z-mark.
' Drive Notes
' CN1
' Connector Input Default
' Terminal Terminal symbol Name
' Numbers Name
       SI0n/a/S-ONServo onSI1n/a/P-ONProportional control refSI2n/aP-OTforward run limitSI3n/aN-OTreverse run limit
    40
    41
.
    42
.
    43
   44
          SI4
                          /ALM-RST alarm reset
۲
    45
          SI5
                          /P-CL foward current limit
۲
    46
            SI6
                           /N-CL
                                       reverse current limit
'Program Constants
'homing speed in revs per sec - was 10
'(algorithm below enables us to use this multiplier in revs per sec)
home speed = 1
'homing creep speed in revs per sec - was 0.1
'(algorithm below enables us to use this multiplier in revs per sec)
home creep=0.2
'Homing Parameters
'Motion direction
clockwise = 0
cclockwise = 1 '+ve enc count direction on my motor
no home switch = $20
no_z_mark = $40
```

```
'Homing Mode
default = 0
profile1 = 1 'special profile 1, switch and z mark
'Trigger Input
z mark=0
ext1=1
ext2=2
ext3=3
'Program and Drive Parameters
slt =0 'sercos daughterboard slot number
drv =1 'drive address
drv axis = 5
enc_resolution = 8192
' The following 'parameter' is or'd with the required
' configuration values - such as 'OR no_z_mark OR no_home_switch
parameter = clockwise
homing mode = default
trig_input = ext3 'z_mark
' SERCOS Homing Parameter
ref dist 1 = 000
ref_offset 1 = 000
' Begin
' Units are 256th enc edge per msec.
' homing velocity
home vel = home speed*(enc resolution/1000)*256
home_accel = home_vel*100
' creep velosity = 1 rev per sec
creep vel = home creep*(enc resolution/1000)*256
BASE(drv axis)
'Check drive in correct control mode.
VR(0) = SERCOS(4, slt, drv, 32768, 2)
IF VR(0) <>$10 THEN
    PRINT "Error - drive not in correct mode - set Pn0000 to $10"
    PRINT "& cycle power to drive. "
    STOP
ENDIF
'Standard SERCOS Homing IDNs
'homing velocity
SERCOS(5,slt,drv,41,4,home_vel)
'homing accel
SERCOS(5,slt,drv,42,4,home accel)
'Homing Parameter
SERCOS(5, slt, drv, 147, 2, parameter)
'Ref Dist 1
SERCOS(5,slt,drv,52,4,ref dist 1)
'Ref Offset 1
SERCOS(5,slt,drv,150,4,ref_offset 1)
' Propietary Homing IDNs
'Homing Mode
SERCOS(5, slt, drv, $c100, 2, homing mode)
'Homing Input
' ( NB Options 4:SI4,5:SI5,6:SI6 )
SERCOS(5, slt, drv, $c101, 2, 6)
Users Guide
```

```
'Homing Creep velocity
SERCOS(5,slt,drv,$c102,4,creep vel)
'Homing Time Constant - default is 100
'SERCOS(5,slt,drv,$c103,2,100)
'Configure drive latch input (using a P-IDN), required
'if homing only to the switch (and not the z-mark) using
'the standard profile.
SERCOS(5,slt,drv,49252,2,trig input)
'Inform user
PRINT#5,"Starting homing routine"
'Run homing command
SERCOS(6, slt, drv, 148, 6000, 1)
nstatus = SERCOS(4,slt,drv,403)
WHILE nstatus<>1
   nstatus = SERCOS(4,slt,drv,403)
   WA(10)
   IF nstatus<>0 AND nstatus<>1 THEN
        PRINT#5,"Eh, status is ",nstatus
   ENDIF
WEND
'Cancel homing command
SERCOS(6, slt, drv, 148, 6000, 0)
```

#### Appendix A –SERCOS IDN Specification

IDNs 0-32767 are the standard SERCOS Interface Specification parameters. IDNs 32768 and above are the Product specific (manufacturer) parameters. Yaskawa drive parameters are mapped from this base number, hence drive parameter 0 is SERCOS parameter 32768, and drive parameter 0x50A is SERCOS parameter 34058 for example. SigmaII Interface parameters are mapped from address 49152.

| Section 1 | 1 | Standard | IDNs |
|-----------|---|----------|------|
|-----------|---|----------|------|

| IDN S-0-0001 Control Unit (NC) Cycle Time (tNcyc) |                  |
|---------------------------------------------------|------------------|
|                                                   |                  |
| Data Length                                       | 2 Bytes          |
| Data Type                                         | Unsigned integer |
| Minimum Value                                     | 500              |
| Maximum Value                                     | 2000             |
| Scaling/Unit                                      | usec             |
| Read                                              | CP2-4            |
| Write                                             | CP2              |
| Default                                           | 1000             |

The period at which the master control unit updates commands to the drive. The drive automatically overrides this value with that of the Communication Cycle Time (IDN 2) in CP3.

| IDN S-0-0002 SERCOS Communication Cycle Time (tScyc) |                  |
|------------------------------------------------------|------------------|
|                                                      |                  |
| Data Length                                          | 2 Bytes          |
| Data Type                                            | Unsigned integer |
| Minimum Value                                        | 500              |
| Maximum Value                                        | 32000            |
| Scaling/Unit                                         | usec             |
| Read                                                 | CP2-4            |
| Write                                                | CP2              |
| Default                                              | 1000             |

The SERCOS (system interface) communication cycle time defines the period at which the MST, AT & MDT telegrams are transmitted. Allowable cycle times are 500usec and from 1000usec to 32000 usec in 1000usec increments.

| IDN S-0-0003 Shortest AT Transmission Start Time (t1min) – Read only |                  |
|----------------------------------------------------------------------|------------------|
|                                                                      |                  |
| Data Length                                                          | 2 Bytes          |
| Data Type                                                            | Unsigned integer |
| Minimum Value                                                        |                  |
| Maximum Value                                                        |                  |
| Scaling/Unit                                                         | usec             |
| Read                                                                 | CP2-4            |
| Write                                                                | N/A              |
| Default                                                              | 10               |

The minimum time the drive requires after receipt of the MST before it can send its AT.

| IDN S-0-0004 Transmit/Receive transition time (Tatmt) – Read only |                  |
|-------------------------------------------------------------------|------------------|
|                                                                   |                  |
| Data Length                                                       | 2 Bytes          |
| Data Type                                                         | Unsigned integer |
| Minimum Value                                                     |                  |
| Maximum Value                                                     |                  |
| Scaling/Unit                                                      | usec             |
| Read                                                              | CP2-4            |
| Write                                                             | N/A              |
| Default                                                           | 10               |

The time the drive requires after completion of the AT transmission before receiving the MDT. The master reads this parameter for all drives on the ring during CP2 in order to calculate an appropriate MDT transmission starting time (IDN 89).

| IDN S-0-0005 Minimum Feedback Processing Time (t5) – Read only |                  |  |
|----------------------------------------------------------------|------------------|--|
|                                                                |                  |  |
| Data Length                                                    | 2 Bytes          |  |
| Data Type                                                      | Unsigned integer |  |
| Minimum Value                                                  |                  |  |
| Maximum Value                                                  |                  |  |
| Scaling/Unit                                                   | usec             |  |
| Read                                                           | CP2-4            |  |
| Write                                                          | N/A              |  |
| Default                                                        | 150              |  |

The time required by the drive between the start of the feedback acquisition and the end of the next MST – required for acquiring and processing cyclic feedback. The master reads this value during CP2 in order to synchronize the measurement times of the feedback acquisition capture point (t4 - IDN 7) appropriately for all drives.

| IDN S-0-0006 AT Transmission Starting Time (t1) |                  |  |
|-------------------------------------------------|------------------|--|
|                                                 |                  |  |
| Data Length                                     | 2 Bytes          |  |
| Data Type                                       | Unsigned integer |  |
| Minimum Value                                   | IDN 3            |  |
| Maximum Value                                   | IDN 2            |  |
| Scaling/Unit                                    | usec             |  |
| Read                                            | CP2-4            |  |
| Write                                           | CP2              |  |
| Default                                         | 50               |  |

This value determines when the drive sends its AT during CP3 & CP4 (the time interval after the MST). The value must be greater than or equal to the shortest AT transmission starting time (IDN 3).

| IDN S-0-0007 Feedback Acquisition Capture Point (t4) |                  |
|------------------------------------------------------|------------------|
|                                                      |                  |
| Data Length                                          | 2 Bytes          |
| Data Type                                            | Unsigned integer |
| Minimum Value                                        | 0                |
| Maximum Value                                        | IDN 2            |
| Scaling/Unit                                         | usec             |
| Read                                                 | CP2-4            |
| Write                                                | CP2              |
| Default                                              | See notes.       |

This value, determined by the master, is the time at which the drive feedback must be acquired. In this way the master declares a default acquisition capture point enabling synchronization of the feedback for all drives that work in coordination with each other. The drive enables this point during CP3.

This value is automatically set to IDN 8.

| IDN S-0-0008 Command Value Valid Time (t3) |                  |  |
|--------------------------------------------|------------------|--|
|                                            |                  |  |
| Data Length                                | 2 Bytes          |  |
| Data Type                                  | Unsigned integer |  |
| Minimum Value                              |                  |  |
| Maximum Value                              |                  |  |
| Scaling/Unit                               | usec             |  |
| Read                                       | CP2-4            |  |
| Write                                      | CP2              |  |
| Default                                    | See notes.       |  |

The time the drive accesses the new command values after the completion of an MST. In this way the master provides the command value valid time to enable synchronization of command values among all coordinated drives. The drive enables this time during CP3. This value is automatically set to Tscyc-150 usec in CP3.

| IDN S-0-0009 Position of Data Record in MDT |                  |
|---------------------------------------------|------------------|
|                                             |                  |
| Data Length                                 | 2 Bytes          |
| Data Type                                   | Unsigned integer |
| Minimum Value                               | 1 (one drive)    |
| Maximum Value                               | 65,531           |
| Scaling/Unit                                | Bytes            |
| Read                                        | CP2-4            |
| Write                                       | CP2              |
| Default                                     | None             |

This parameter holds the offset in bytes of the drive's data record within the MDT. It starts with '1' for the initial data byte after the address field within the MDT. The master informs each drive in the ring this value during CP2, and it becomes active during CP3.

| IDN S-0-0010 Length of MDT |                                        |
|----------------------------|----------------------------------------|
|                            |                                        |
| Data Length                | 2 Bytes                                |
| Data Type                  | Unsigned integer                       |
| Minimum Value              | 4 (one drive)                          |
| Maximum Value              | 65,534 (number of bytes of 254 drives) |
| Scaling/Unit               | Bytes                                  |
| Read                       | CP2-4                                  |
| Write                      | CP2                                    |
| Default                    | None                                   |

This parameter holds the offset in bytes of the drive's data record within the MDT. It starts with '1' for the initial data byte after the address field within the MDT. The master informs each drive of this value during CP2, and it becomes active during CP3.

| IDN S-0-0011 Class 1 Diagnostics |         |  |
|----------------------------------|---------|--|
|                                  |         |  |
| Data Length                      | 2 Bytes |  |
| Data Type                        | Binary  |  |
| Minimum Value                    | 0       |  |
| Maximum Value                    | 0xFFFF  |  |
| Scaling/Unit                     |         |  |
| Read                             | CP2-4   |  |
| Write                            | N/A     |  |
| Default                          | None    |  |

The C1D identifies the current shutdown fault status of the drive. These errors are latched into the C1D, and the C1D status bit (bit 13) is set in the drive status word. These error flags are only cleared after the error has been eliminated and the 'Reset Class 1 Diagnostics' procedure command (IDN 99) has been executed via the service channel. When a fault occurs the drive decelerates to a stop and releases torque.

| Bit | Description                                 |
|-----|---------------------------------------------|
| 0   | Overload fault                              |
| 1   | Amplifier over temperature fault            |
| 2   | Motor over temperature fault                |
| 3   | Cooling error                               |
| 4   | Control voltage fault                       |
| 5   | Feedback loss fault                         |
| 6   | Commutation fault                           |
| 7   | Over current fault                          |
| 8   | Over voltage fault                          |
| 9   | Under voltage fault                         |
| 10  | Power supply phase fault                    |
| 11  | Excessive velocity deviation                |
| 12  | Communication interface fault               |
| 13  | Software limit switch fault                 |
| 14  | Reserved                                    |
| 15  | Manufacturer specific warning (see IDN 129) |

Where 0 = no fault, 1 = fault.

| IDN S-0-0012 Class 2 Diagnostics |         |  |
|----------------------------------|---------|--|
|                                  |         |  |
| Data Length                      | 2 Bytes |  |
| Data Type                        | Binary  |  |
| Minimum Value                    | 0       |  |
| Maximum Value                    | 0xFFFF  |  |
| Scaling/Unit                     |         |  |
| Read                             | CP2-4   |  |
| Write                            | N/A     |  |
| Default                          | 0       |  |

The C2D identifies warnings of an impending drive shutdown error. When an unmasked (see IDN 97) warning is activated or cancelled in the C2D, this sets (to `1') the C2D change bit in the drive status. When the C2D is read via the service channel, the C2D change bit is reset (to `0'). The warning bits in the C2D are not latched, and hence are automatically reset when the warning condition is no longer valid.

| Bit | Description                                       |
|-----|---------------------------------------------------|
| 0   | Overload warning                                  |
| 1   | Reserved: Amplifier over temperature warning      |
| 2   | Reserved: Motor over temperature warning          |
| 3   | Reserved: Cooling error warning                   |
| 4   | Reserved                                          |
| 5   | Reserved: Positioning velocity exceeds limit      |
| 6   | Reserved                                          |
| 7   | Reserved                                          |
| 8   | Reserved                                          |
| 9   | Reserved: Under voltage warning (bus voltage)     |
| 10  | Reserved                                          |
| 11  | Reserved: Excessive velocity deviation            |
| 12  | Reserved                                          |
| 13  | Reserved: Target Position outside of travel range |
| 14  | Reserved                                          |
| 15  | Manufacturer specific warning (see IDN 181)       |

Where 0 = no shutdown warning, 1 = shutdown warning.

| IDN S-0-0013 Class 3 Diagnostics |         |  |
|----------------------------------|---------|--|
|                                  |         |  |
| Data Length                      | 2 Bytes |  |
| Data Type                        | Binary  |  |
| Minimum Value                    | 0       |  |
| Maximum Value                    | 0xFFFF  |  |
| Scaling/Unit                     |         |  |
| Read                             | CP2-4   |  |
| Write                            | N/A     |  |
| Default                          | 0       |  |

This parameter contains the drive operation status flags. When a condition changes in the drive, the corresponding bit changes in the C3D and - provided the flag is not masked (see IDN 98) - the C3D change bit in the drive status is set (to '1'). When the C3D is read via the service channel the C3D change bit is reset (to '0'). These flags are not latched, and will be reset (to '0') when the condition no longer exists.

| Bit | Description                                 |
|-----|---------------------------------------------|
| 0   | Nfeedback = ncommand                        |
| 1   | Nfeedback = 0                               |
| 2   | Nfeedback < nx                              |
| 3   | $T \ge Tx$ (NYS)                            |
| 4   | T >= Tlimit                                 |
| 5   | Ncommand > nlimit                           |
| 6   | In position                                 |
| 7   | $P \ge Px (NYS)$                            |
| 8   | Reserved                                    |
| 9   | Nfeedback <= minimum spindle speed (NYS)    |
| 10  | Nfeedback >= maximum spindle speed (NYS)    |
| 11  | In coarse position (NYS)                    |
| 12  | Target Position Attained (NYS)              |
| 13  | Interpolator Halted (NYS)                   |
| 14  | Reserved                                    |
| 15  | Manufacturer specific warning (see IDN 182) |

Where 0 = condition does not exist, 1 = condition exists.

| IDN S-0-0014 Interface Status |         |  |
|-------------------------------|---------|--|
|                               |         |  |
| Data Length                   | 2 Bytes |  |
| Data Type                     | Binary  |  |
| Minimum Value                 | 0       |  |
| Maximum Value                 | 0xFFFF  |  |
| Scaling/Unit                  |         |  |
| Read                          | CP2-4   |  |
| Write                         | N/A     |  |
| Default                       | 0       |  |

If a communication interface error occurs, the appropriate error bit will be latched in the interface status along with the communication phase (CP) in which the error occurred. The communication error flag is also set in C1D (see IDN 11).

If there are no communication errors present, the actual network communication phase (CP) is identified by Bits 2-0. The drive cancels a communication error and resets to '0' only if the error at the interface

has been eliminated and on executing the procedure command 'reset class 1 diagnostics'.

| Bit | Description                                   |
|-----|-----------------------------------------------|
| 0   | СР                                            |
| 1   | СР                                            |
| 2   | СР                                            |
| 3   | MST failure                                   |
| 4   | MDT failure                                   |
| 5   | Invalid phase (CP>4)                          |
| 6   | Error during phase advance                    |
| 7   | Error during phase regression                 |
| 8   | Phase switch without proper acknowledgement   |
| 9   | Switching to an un-initialized operation mode |
| 10  | Duplicate drive address                       |
| 11  | Reserved                                      |
| 12  | Reserved                                      |
| 13  | Reserved                                      |

| 14 | Reserved |
|----|----------|
| 15 | Reserved |

Where 0 = no error, 1 = error exists (for bits 15-3)

| IDN S-0-0015 Telegram Type |                  |  |
|----------------------------|------------------|--|
|                            |                  |  |
| Data Length                | 2 bytes          |  |
| Data Type                  | Unsigned integer |  |
| Minimum Value              | 0                |  |
| Maximum Value              | 7                |  |
| Scaling/Unit               |                  |  |
| Read                       | CP2-4            |  |
| Write                      | CP2              |  |
| Default                    |                  |  |

This parameter identifies the MDT/AT telegram types – and hence the contents of their cyclic data fields - used during CP3 & CP4.

| IDN<br>15 | Telegram Type       | MDT (master command value) | AT (drive<br>feedback value) | Available |
|-----------|---------------------|----------------------------|------------------------------|-----------|
|           |                     |                            |                              |           |
| 0         | Standard Telegram 0 | None                       | None                         | Yes       |
| 1         | Standard Telegram 1 | Torque (IDN80)             | None                         | Yes       |
| 2         | Standard Telegram 2 | Velocity (IDN36)           | Velocity (IDN40)             | No        |
| 3         | Standard Telegram 3 | Velocity (IDN36)           | Position (IDN51)             | Yes       |
| 4         | Standard Telegram 4 | Position (IDN47)           | Position (IDN51)             | Yes       |
| 5         | Standard Telegram 5 | Pos/Vel                    | Pos/Vel                      | No        |
| 6         | Standard Telegram 6 | Velocity (IDN36)           | None                         | Yes       |
| 7         | Application Custom  | Defined by                 | Defined by                   | Yes       |
|           | Telegrams           | IDN24                      | IDN16                        |           |

| IDN S-0-0016 AT Configuration List |                                        |  |
|------------------------------------|----------------------------------------|--|
|                                    |                                        |  |
| Data Length                        | 2 byte elements, variable length array |  |
| Data Type                          | IDN List                               |  |
| Minimum Value                      |                                        |  |
| Maximum Value                      |                                        |  |
| Scaling/Unit                       |                                        |  |
| Read                               | CP2-4                                  |  |
| Write                              | CP2                                    |  |
| Default                            |                                        |  |

This parameter list contains the IDNs whose operation data will be transmitted cyclically in the AT in an application telegram (see IDN 15). Only operation data present in the IDN list of configuration data in the AT (IDN 187) are allowed as cyclic data.

| IDN S-0-0017 IDN List of all Operation Data |                                        |  |
|---------------------------------------------|----------------------------------------|--|
|                                             |                                        |  |
| Data Length                                 | 2 byte elements, variable length array |  |
| Data Type                                   | IDN List                               |  |
| Minimum Value                               |                                        |  |
| Maximum Value                               |                                        |  |
| Scaling/Unit                                |                                        |  |
| Read                                        | CP2-4                                  |  |
| Write                                       | N/A                                    |  |
| Default                                     |                                        |  |

This parameter contains a list of the IDNs of all operation data supported by the drive.

| IDN S-0-0018 IDN List of Operation Data for CP2 |                                        |  |
|-------------------------------------------------|----------------------------------------|--|
|                                                 |                                        |  |
| Data Length                                     | 2 byte elements, variable length array |  |
| Data Type                                       | IDN List                               |  |
| Minimum Value                                   |                                        |  |
| Maximum Value                                   |                                        |  |
| Scaling/Unit                                    |                                        |  |
| Read                                            | CP2-4                                  |  |
| Write                                           | N/A                                    |  |
| Default                                         |                                        |  |

This parameter contains a list of the IDNs of all data that must be written by the master during CP2. The drive's CP2 to CP3 transition procedure (IDN 127) will fail if this data is not supplied by the master.

| IDN S-0-0019 IDN List of Operation Data for CP3 |                                        |  |
|-------------------------------------------------|----------------------------------------|--|
|                                                 |                                        |  |
| Data Length                                     | 2 byte elements, variable length array |  |
| Data Type                                       | IDN List                               |  |
| Minimum Value                                   |                                        |  |
| Maximum Value                                   |                                        |  |
| Scaling/Unit                                    |                                        |  |
| Read                                            | CP2-4                                  |  |
| Write                                           | N/A                                    |  |
| Default                                         |                                        |  |

This parameter contains a list of the IDNs of all data that must be written by the master during CP3. The drive's CP3 to CP4 transition procedure (IDN 128) will fail if this data is not supplied by the master.

| IDN S-0-0021 IDN List of Invalid Operation Data for CP2 |                                        |  |
|---------------------------------------------------------|----------------------------------------|--|
|                                                         |                                        |  |
| Data Length                                             | 2 byte elements, variable length array |  |
| Data Type                                               | IDN List                               |  |
| Minimum Value                                           |                                        |  |
| Maximum Value                                           |                                        |  |
| Scaling/Unit                                            |                                        |  |
| Read                                                    | CP2-4                                  |  |
| Write                                                   | N/A                                    |  |
| Default                                                 |                                        |  |

This parameter contains a list of the IDNs of parameters which are in the IDN list of operation data for CP2 (IDN 18) but considered to be invalid by the drive (ie the master has not written to these parameters, or the values written by the master were not accepted).

| IDN S-0-0022 IDN List of Invalid Operation Data for CP3 |                                        |  |
|---------------------------------------------------------|----------------------------------------|--|
|                                                         |                                        |  |
| Data Length                                             | 2 byte elements, variable length array |  |
| Data Type                                               | IDN List                               |  |
| Minimum Value                                           |                                        |  |
| Maximum Value                                           |                                        |  |
| Scaling/Unit                                            |                                        |  |
| Read                                                    | CP2-4                                  |  |
| Write                                                   | N/A                                    |  |
| Default                                                 |                                        |  |

This parameter contains a list of the IDNs of parameters which are in the IDN list of operation data for CP3 (IDN 19) but which are considered to be invalid by the drive (ie the master has not written to these parameters, or the values written by the master were not accepted).

| IDN S-0-0024 MDT Configuration List |                                        |  |
|-------------------------------------|----------------------------------------|--|
|                                     |                                        |  |
| Data Length                         | 2 byte elements, variable length array |  |
| Data Type                           | IDN List                               |  |
| Minimum Value                       |                                        |  |
| Maximum Value                       |                                        |  |
| Scaling/Unit                        |                                        |  |
| Read                                | CP2-4                                  |  |
| Write                               | CP2                                    |  |
| Default                             |                                        |  |

This list parameter contains the IDNs whose operation data will be transmitted cyclically in the MDT in an application telegram (see IDN 15). Only operation data present in the IDN list of configuration data in the MDT (IDN 188) are allowed as cyclic data.

| IDN S-0-0025 IDN List of all Procedure Commands |                                        |  |
|-------------------------------------------------|----------------------------------------|--|
|                                                 |                                        |  |
| Data Length                                     | 2 byte elements, variable length array |  |
| Data Type                                       | IDN List                               |  |
| Minimum Value                                   |                                        |  |
| Maximum Value                                   |                                        |  |
| Scaling/Unit                                    |                                        |  |
| Read                                            | CP2-4                                  |  |
| Write                                           | N/A                                    |  |
| Default                                         |                                        |  |

This parameter contains a list of the IDNs of all procedure commands supported by the drive.

| IDN S-0-0028 MST Error Counter |                  |
|--------------------------------|------------------|
|                                |                  |
| Data Length                    | 2 bytes          |
| Data Type                      | Unsigned integer |
| Minimum Value                  | 0                |
| Maximum Value                  | 65535            |
| Scaling/Unit                   |                  |
| Read                           | CP2-4            |
| Write                          | N/A              |
| Default                        |                  |

This parameter records the count of all invalid MST's in CP3 and CP4. In cases where more than 2 consecutive MSTs are invalid, any further consecutive invalid MSTs are not counted. The counter increments to  $2^{16}$ -1.

| IDN S-0-0029 MDT Error Counter |                  |
|--------------------------------|------------------|
|                                |                  |
| Data Length                    | 2 bytes          |
| Data Type                      | Unsigned integer |
| Minimum Value                  | 0                |
| Maximum Value                  | 65535            |
| Scaling/Unit                   |                  |
| Read                           | CP2-4            |
| Write                          | N/A              |
| Default                        |                  |

This parameter records the count of all invalid MDT's in CP4. In cases where more than 2 consecutive MDTs are invalid, any further consecutive invalid MDTs are not counted. The counter increments to  $2^{16}$ -1.

| IDN S-0-0030 Manufacturer Version |                                        |
|-----------------------------------|----------------------------------------|
|                                   |                                        |
| Data Length                       | 1 byte elements, variable length array |
| Data Type                         | Text                                   |
| Minimum Value                     |                                        |
| Maximum Value                     |                                        |
| Scaling/Unit                      |                                        |
| Read                              | CP2-4                                  |
| Write                             | N/A                                    |
| Default                           |                                        |

This parameter holds a text string of the firmware version.

| IDN S-0-0032 Primary Operation Mode |                  |  |
|-------------------------------------|------------------|--|
|                                     |                  |  |
| Data Length                         | 2 bytes          |  |
| Data Type                           | Unsigned integer |  |
| Minimum Value                       | 0                |  |
| Maximum Value                       |                  |  |
| Scaling/Unit                        |                  |  |
| Read                                | CP2-4            |  |
| Write                               | CP2              |  |
| Default                             |                  |  |

This parameter defines the drive's operation mode when the AT status word bits 8 and 9 are both zero. The master requests a particular operation mode by setting the MDT control words bits 8 & 9.

| Bit | Value | Description                                             |
|-----|-------|---------------------------------------------------------|
| 0-2 | 000   | No mode of operation                                    |
|     | 001   | Reserved: Torque control                                |
|     | 010   | Velocity Control                                        |
|     | 011   | Position control                                        |
|     | 100   | Reserved                                                |
|     | 101   | Reserved                                                |
| 3   | 0     | Position Control with following error (IDN159)          |
|     | 1     | Position Control without following error                |
| 4   |       | Reserved                                                |
| 5   |       | Reserved                                                |
| 6   |       | Reserved                                                |
| 7   |       | Reserved                                                |
| 8   |       | Reserved                                                |
| 9   |       | Reserved                                                |
| 10  |       | Reserved                                                |
| 11  |       | Reserved                                                |
| 12  |       | Reserved                                                |
| 13  |       | Reserved                                                |
| 14  | 0     | Command values are issued as cyclic data                |
|     | 1     | Reserved: command values are issued through the service |
|     |       | channel                                                 |
| 15  | 0     | Bits 0-14 are as defined above                          |
|     | 1     | Reserved: Bits 0-14 are defined by the manufacturer     |

Note that when the velocity control with torque feed forward mode is required, this parameter must be set to the velocity control mode.

| IDN S-0-0033 Secondary Operation Mode |                  |
|---------------------------------------|------------------|
|                                       |                  |
| Data Length                           | 2 bytes          |
| Data Type                             | Unsigned integer |
| Minimum Value                         | 0                |
| Maximum Value                         |                  |
| Scaling/Unit                          |                  |
| Read                                  | CP2-4            |
| Write                                 | CP2              |
| Default                               |                  |

This parameter defines the drive's secondary operation mode.

| IDN S-0-0036 Velocity Command Value |                     |
|-------------------------------------|---------------------|
|                                     |                     |
| Data Length                         | 4 bytes             |
| Data Type                           | Integer             |
| Minimum Value                       | -2 <sup>31</sup>    |
| Maximum Value                       | +2 <sup>31</sup> -1 |
| Scaling/Unit                        |                     |
| Read                                | CP2-4               |
| Write                               | CP2-4               |
| Default                             |                     |

The master writes the command velocity to this IDN, either cyclically in the MDT if the appropriate telegram type has been defined (see IDN 15) or via the service channel. The units will depend upon the control unit cycle time (IDN 1).

| Scaling Type     | IDN 44 |
|------------------|--------|
| Scaling Factor   | IDN 45 |
| Scaling Exponent | IDN 46 |

| IDN S-0-0040 Velocity Feedback Value 1 |                           |
|----------------------------------------|---------------------------|
|                                        |                           |
| Data Length                            | 4 bytes                   |
| Data Type                              | Integer                   |
| Minimum Value                          | -2 <sup>31</sup>          |
| Maximum Value                          | $+2^{31}-1$               |
| Scaling/Unit                           | Counts msec <sup>-1</sup> |
| Read                                   | CP2-4                     |
| Write                                  | N/A                       |
| Default                                |                           |

This parameter is used to retrieve the velocity feedback from the drive, either cyclically in the AT if the appropriate telegram type has been defined (see IDN 15) or via the service channel. The velocity unit is always counts/millisecond and is not affected by the Control Unit Cycle Time (IDN 2).

| Scaling Type     | IDN 44 |
|------------------|--------|
| Scaling Factor   | IDN 45 |
| Scaling Exponent | IDN 46 |

Only the 'no scaling' option is supported.

| IDN S-0-0041 Homing Velocity |                                          |
|------------------------------|------------------------------------------|
|                              |                                          |
| Data Length                  | 4 bytes                                  |
| Data Type                    | Integer                                  |
| Minimum Value                | -2 <sup>31</sup>                         |
| Maximum Value                | +2 <sup>31</sup> -1                      |
| Scaling/Unit                 | 256 <sup>th</sup> encoder edges per msec |
| Read                         | CP2-4                                    |
| Write                        | CP2-4                                    |
| Default                      | 0                                        |

This parameter defines the homing velocity of the drive used whilst running the Drive Controlled Homing Procedure Command (IDN 00148).

Scaling is as indicated.

| IDN S-0-0042 Homing Acceleration |                                                       |
|----------------------------------|-------------------------------------------------------|
|                                  |                                                       |
| Data Length                      | 4 bytes                                               |
| Data Type                        | Integer                                               |
| Minimum Value                    | -2 <sup>31</sup>                                      |
| Maximum Value                    | $+2^{31}-1$                                           |
| Scaling/Unit                     | 256 <sup>th</sup> encoder edges per msec <sup>2</sup> |
| Read                             | CP2-4                                                 |
| Write                            | CP2-4                                                 |
| Default                          | 0                                                     |

This parameter defines the homing acceleration and deceleration of the drive used whilst running the Drive Controlled Homing Procedure Command (IDN 00148).

Scaling is as indicated

| IDN S-0-0043 Velocity Polarity Parameter |         |
|------------------------------------------|---------|
|                                          |         |
| Data Length                              | 2 bytes |
| Data Type                                | Binary  |
| Minimum Value                            |         |
| Maximum Value                            |         |
| Scaling/Unit                             |         |
| Read                                     | CP2-4   |
| Write                                    | CP2-4   |
| Default                                  | 0       |

This parameter is used to switch polarities of velocity data. These are switched externally (not internally) on the input and output of the closed loop system. The motor shaft turns clockwise when there is a positive velocity command difference and no inversion is programmed.

| Bit  | Description                               |
|------|-------------------------------------------|
| 0    | Velocity command value                    |
| 1    | Reserved: Additive velocity command value |
| 2    | Velocity feedback value 1                 |
| 3    | Reserved: Velocity feedback value 2       |
| 4-15 | Reserved                                  |

Where 0 = not inverted, 1 = inverted.

| IDN S-0-0044 Velocity Data Scaling Type |                  |  |
|-----------------------------------------|------------------|--|
|                                         |                  |  |
| Data Length                             | 2 bytes          |  |
| Data Type                               | Unsigned integer |  |
| Minimum Value                           |                  |  |
| Maximum Value                           |                  |  |
| Scaling/Unit                            |                  |  |
| Read                                    | CP2-4            |  |
| Write                                   | N/A              |  |
| Default                                 | 0                |  |

This IDN defines the scaling options for all velocity data in the drive. The 'no scaling' and 'preferred scaling' options are supported.

| Value                  | Description                           |
|------------------------|---------------------------------------|
| 0b 0000 0000 0000 0000 | No scaling                            |
| 0b 0000 0000 0000 0010 | Preferred scaling :                   |
|                        | Rotational scaling                    |
|                        | Preferred scaling (10 <sup>-4</sup> ) |
|                        | Revolutions                           |
|                        | Minutes                               |
|                        | At the motor shaft                    |

Bit field Definition :

| Bit  | Description                             |
|------|-----------------------------------------|
| 2-0  | Scaling Method                          |
|      | 000 – no scaling                        |
|      | 001 – reserved – linear scaling         |
|      | 010 – rotational scaling                |
| 3    | Reserved :                              |
|      | 0 = preferred scaling.                  |
|      | 1 = parameter scaling.                  |
| 4    | Reserved :                              |
|      | Units for linear scaling :              |
|      | 0 = metres                              |
|      | 1 = inches                              |
|      | Units for rotational scaling :          |
|      | 0 = revolutions                         |
|      | 1 = reserved                            |
| 5    | Reserved :                              |
|      | Time units                              |
|      | 0 = minutes                             |
|      | 1 = seconds                             |
| 6    | Reserved :                              |
|      | Data reference for rotational scaling : |
|      | 0 – at the motor shaft                  |
|      | 1 – reserved                            |
| 7-15 | Reserved                                |

| IDN S-0-0045 Velocity Data Scaling Factor |                  |  |
|-------------------------------------------|------------------|--|
|                                           |                  |  |
| Data Length                               | 2 bytes          |  |
| Data Type                                 | Unsigned integer |  |
| Minimum Value                             | 1                |  |
| Maximum Value                             | $+2^{16}-1$      |  |
| Scaling/Unit                              |                  |  |
| Read                                      | CP2-4            |  |
| Write                                     | N/A              |  |
| Default                                   | 0                |  |

This IDN defines the scaling factor for all velocity data in the drive.

| IDN S-0-0046 Velocity Data Scaling exponent |                     |  |
|---------------------------------------------|---------------------|--|
|                                             |                     |  |
| Data Length                                 | 2 bytes             |  |
| Data Type                                   | Unsigned integer    |  |
| Minimum Value                               | -2 <sup>15</sup>    |  |
| Maximum Value                               | +2 <sup>15</sup> -1 |  |
| Scaling/Unit                                |                     |  |
| Read                                        | CP2-4               |  |
| Write                                       | N/A                 |  |
| Default                                     | 0                   |  |

This IDN defines the scaling exponent for all velocity data in the drive. The MSBit signifies the sign of the exponent (0: positive, 1: negative), and bits 0..14 represent the exponent value.

| IDN S-0-0047 Position Command Value |             |  |
|-------------------------------------|-------------|--|
|                                     |             |  |
| Data Length                         | 4 bytes     |  |
| Data Type                           | Integer     |  |
| Minimum Value                       | $-2^{31}$   |  |
| Maximum Value                       | $+2^{31}-1$ |  |
| Scaling/Unit                        |             |  |
| Read                                | CP2-4       |  |
| Write                               | CP2-4       |  |
| Default                             |             |  |

The master writes the position command to this IDN, either cyclically in the MDT if the appropriate telegram type has been defined (see IDN 15) or via the service channel. The units will depend upon the control unit cycle time (IDN 2).

| Scaling Type                   | IDN 76 |
|--------------------------------|--------|
| Scaling Factor                 | IDN 77 |
| Scaling Exponent               | IDN 78 |
| Rotational Position Resolution | IDN 79 |

| IDN S-0-0051 Position Feedback Value 1 |                  |  |
|----------------------------------------|------------------|--|
|                                        |                  |  |
| Data Length                            | 4 bytes          |  |
| Data Type                              | Integer          |  |
| Minimum Value                          | -2 <sup>31</sup> |  |
| Maximum Value                          | $+2^{31}-1$      |  |
| Scaling/Unit                           |                  |  |
| Read                                   | CP2-4            |  |
| Write                                  | N/A              |  |
| Default                                |                  |  |

This parameter is used to retrieve the position feedback from the drive, either cyclically in the AT if the appropriate telegram type has been defined (see IDN 15) or via the service channel. The position units depend upon the Control Unit Cycle Time (IDN 2).

| Scaling Type                   | IDN 76 |
|--------------------------------|--------|
| Scaling Factor                 | IDN 77 |
| Scaling Exponent               | IDN 78 |
| Rotational Position Resolution | IDN 79 |

| IDN S-0-0052 Reference Distance 1 |                  |
|-----------------------------------|------------------|
|                                   |                  |
| Data Length                       | 4 bytes          |
| Data Type                         | Integer          |
| Minimum Value                     | -2 <sup>31</sup> |
| Maximum Value                     | $+2^{31}-1$      |
| Scaling/Unit                      |                  |
| Read                              | CP2-4            |
| Write                             | CP2-4            |
| Default                           |                  |

This parameter describes the distance between the machine zero point and the home position referenced through the motor feedback.

| Scaling Type                   | IDN 76 |
|--------------------------------|--------|
| Scaling Factor                 | IDN 77 |
| Scaling Exponent               | IDN 78 |
| Rotational Position Resolution | IDN 79 |

| IDN S-0-0054 Reference Distance 2 |                  |  |
|-----------------------------------|------------------|--|
|                                   |                  |  |
| Data Length                       | 4 bytes          |  |
| Data Type                         | Integer          |  |
| Minimum Value                     | -2 <sup>31</sup> |  |
| Maximum Value                     | $+2^{31}-1$      |  |
| Scaling/Unit                      |                  |  |
| Read                              | CP2-4            |  |
| Write                             | CP2-4            |  |
| Default                           |                  |  |

This parameter describes the distance between the machine zero point and the reference point referenced through the motor feedback.

| Scaling Type                   | IDN 76 |
|--------------------------------|--------|
| Scaling Factor                 | IDN 77 |
| Scaling Exponent               | IDN 78 |
| Rotational Position Resolution | IDN 79 |

| IDN S-0-0055 Position Polarity Parameter |         |
|------------------------------------------|---------|
|                                          |         |
| Data Length                              | 2 bytes |
| Data Type                                | Binary  |
| Minimum Value                            |         |
| Maximum Value                            |         |
| Scaling/Unit                             |         |
| Read                                     | CP2-4   |
| Write                                    | CP2-4   |
| Default                                  | 0       |

This parameter is used to switch polarities of reported position data for specific applications. Polarities are switched outside (i.e., on the input and output) of a closed loop system. When there is a positive position command difference AND no inversion is programmed, the motor shaft turns clockwise.

| Bit  | Description                               |
|------|-------------------------------------------|
| 0    | Position command value                    |
| 1    | Reserved: Additive position command value |
| 2    | Position feedback value 1                 |
| 3    | Reserved: Position feedback value 2       |
| 4    | Reserved: Position limit values           |
| 5    | Reserved: Underflow/overflow threshold    |
| 6-15 | Reserved                                  |

Where 0 = not inverted, 1 = inverted for bits 0-3, 0 = disabled, 1 = enabled for bits 4 & 5.

| IDN S-0-0057 Position Window |                     |  |
|------------------------------|---------------------|--|
|                              |                     |  |
| Data Length                  | 4 bytes             |  |
| Data Type                    | Integer             |  |
| Minimum Value                | 0                   |  |
| Maximum Value                | +2 <sup>31</sup> -1 |  |
| Scaling/Unit                 |                     |  |
| Read                         | CP2-4               |  |
| Write                        | CP2-4               |  |
| Default                      | 100                 |  |

This parameter holds a threshold value, which is used to determine when the drive is considered to be in position. When the difference between the accumulated position command value and the position feedback value is within the range of the position window, then the drive sets the C3D status 'in position'.

| Scaling Type                   | IDN 76 |
|--------------------------------|--------|
| Scaling Factor                 | IDN 77 |
| Scaling Exponent               | IDN 78 |
| Rotational Position Resolution | IDN 79 |

| IDN S-0-0058 Reversal Clearance |                     |  |
|---------------------------------|---------------------|--|
|                                 |                     |  |
| Data Length                     | 4 bytes             |  |
| Data Type                       | Integer             |  |
| Minimum Value                   | 0                   |  |
| Maximum Value                   | +2 <sup>31</sup> -1 |  |
| Scaling/Unit                    |                     |  |
| Read                            | CP2-4               |  |
| Write                           | CP2-4               |  |
| Default                         | 0                   |  |

The reversal clearance describes the amount of backlash between motor and load during reversal, relative to the position data. When this parameter is set to zero no reversal clearance move will occur. (V0.0.30 and later)

| Scaling Type                   | IDN 76 |
|--------------------------------|--------|
| Scaling Factor                 | IDN 77 |
| Scaling Exponent               | IDN 78 |
| Rotational Position Resolution | IDN 79 |

!! Note that all the reversal clearance distance is applied in one drive cycle. Avoid large values to prevent damage to the motor and mechanical parts of the system.

Reversal clearance does not operate with the drive in velocity control mode. It is not operational while the homing procedure is running.

| IDN S-0-0076 Position Data Scaling Type |         |  |
|-----------------------------------------|---------|--|
|                                         |         |  |
| Data Length                             | 2 bytes |  |
| Data Type                               | Binary  |  |
| Minimum Value                           |         |  |
| Maximum Value                           |         |  |
| Scaling/Unit                            |         |  |
| Read                                    | CP2-4   |  |
| Write                                   | CP2     |  |
| Default                                 | 0       |  |

This IDN defines the scaling options for all position data. The 'no scaling' or 'preferred data scaling' options are available. The 'Processing Format' bit which determines whether the feedback value has a modulo is also supported ( see IDN 103 ).

| Value                  | Description                                   |
|------------------------|-----------------------------------------------|
| 0b 0000 0000 0000 0000 | No scaling                                    |
| 0b 0000 0000 x000 0010 | Preferred scaling :                           |
|                        | Rotational scaling                            |
|                        | Preferred scaling (3600000/rev)               |
|                        | Degrees                                       |
|                        | At the motor shaft                            |
|                        | Absolute format (x=0), or modulo format (x=1) |

Bit Field Definitions

| Bit  | Description                             |
|------|-----------------------------------------|
| 2-0  | 000 – no scaling                        |
|      | 010 – rotational scaling                |
| 3    | Scaling for rotational scaling :        |
|      | 0 – preferred scaling, of 3600000/rev   |
|      | 1 – reserved                            |
| 4    | Units for rotation scaling :            |
|      | 0 = degrees                             |
|      | 1 = reserved                            |
| 5    | Reserved                                |
| 6    | Data reference for rotational scaling : |
|      | 0 – at the motor shaft                  |
|      | 1 – reserved                            |
| 7    | Processing Format                       |
|      | 0 – absolute format                     |
|      | 1 - modulo format                       |
| 8-15 | Reserved                                |

| IDN S-0-0077 Linear Position Data Scaling Factor |                     |
|--------------------------------------------------|---------------------|
|                                                  |                     |
| Data Length                                      | 2 bytes             |
| Data Type                                        | Unsigned integer    |
| Minimum Value                                    | 1                   |
| Maximum Value                                    | +2 <sup>16</sup> -1 |
| Scaling/Unit                                     |                     |
| Read                                             | CP2-4               |
| Write                                            | N/A                 |
| Default                                          | 0                   |

This IDN defines the scaling factor for all position data in the drive.

| IDN S-0-0078 Linear Position Data Scaling Exponent |                     |
|----------------------------------------------------|---------------------|
|                                                    |                     |
| Data Length                                        | 2 bytes             |
| Data Type                                          | Unsigned integer    |
| Minimum Value                                      | -2 <sup>15</sup>    |
| Maximum Value                                      | +2 <sup>15</sup> -1 |
| Scaling/Unit                                       |                     |
| Read                                               | CP2-4               |
| Write                                              | N/A                 |
| Default                                            | 0                   |

This IDN defines the scaling exponent for all position data in the drive. The MSBit signifies the sign of the exponent (0: positive, 1: negative), and bits 0..14 represent the exponent value.

| IDN S-0-0080 Torque Command Value |                     |
|-----------------------------------|---------------------|
|                                   |                     |
| Data Length                       | 2 bytes             |
| Data Type                         | Integer             |
| Minimum Value                     | -2 <sup>15</sup>    |
| Maximum Value                     | +2 <sup>15</sup> -1 |
| Scaling/Unit                      | 0.1% of motor Ic    |
| Read                              | CP2-4               |
| Write                             | CP2-4               |
| Default                           |                     |

The master writes the torque command to this IDN, either cyclically in the MDT if the appropriate telegram type has been defined (see IDN 15) or via the service channel.

| Scaling Type     | IDN 86 |
|------------------|--------|
| Scaling Factor   | IDN 93 |
| Scaling Exponent | IDN 94 |

| IDN S-0-0084 Torque Feedback Value |                     |
|------------------------------------|---------------------|
|                                    |                     |
| Data Length                        | 2 bytes             |
| Data Type                          | Integer             |
| Minimum Value                      | -2 <sup>15</sup>    |
| Maximum Value                      | +2 <sup>15</sup> -1 |
| Scaling/Unit                       | 0.1% of motor Ic    |
| Read                               | CP2-4               |
| Write                              | N/A                 |
| Default                            |                     |

This parameter is used to retrieve the torque feedback from the drive, either cyclically in the AT if the appropriate telegram type has been defined (see IDN 15) or via the service channel.

| Scaling Type     | IDN 86 |
|------------------|--------|
| Scaling Factor   | IDN 93 |
| Scaling Exponent | IDN 94 |

| IDN S-0-0085 Torque Polarity Parameter |         |
|----------------------------------------|---------|
|                                        |         |
| Data Length                            | 2 bytes |
| Data Type                              | Binary  |
| Minimum Value                          |         |
| Maximum Value                          |         |
| Scaling/Unit                           |         |
| Read                                   | CP2-4   |
| Write                                  | CP2-4   |
| Default                                | 0       |

This parameter is used to switch polarities of torque data. These are switched externally (not internally) on the input and output of the closed loop system. The motor shaft turns clockwise when there is a positive torque command difference and no inversion is programmed.

| Bit  | Description                             |
|------|-----------------------------------------|
| 0    | Torque command value                    |
| 1    | Reserved: Additive torque command value |
| 2    | Torque feedback value                   |
| 3-15 | Reserved                                |

Where 0 = not inverted, 1 = inverted.

| IDN S-0-0086 Torque/force Data Scaling Type |         |
|---------------------------------------------|---------|
|                                             |         |
| Data Length                                 | 2 bytes |
| Data Type                                   | Binary  |
| Minimum Value                               |         |
| Maximum Value                               |         |
| Scaling/Unit                                |         |
| Read                                        | CP2-4   |
| Write                                       | N/A     |
| Default                                     | 0       |

This IDN defines the scaling options for all torque data. Only the 'percentage scaling' is supported.

| Value                  | Description                                                          |
|------------------------|----------------------------------------------------------------------|
| 0b 0000 0000 0000 0000 | Percentage scaling<br>Preferred scaling (0.1%)<br>At the motor shaft |

| Bit  | Description                       |
|------|-----------------------------------|
|      | Description                       |
| 2-0  | Reserved :                        |
|      | Scaling Method                    |
|      | 000 – percentage scaling          |
|      | 001 – linear scaling (force)      |
|      | 010 – rotational scaling (torque) |
| 3    | Reserved :                        |
|      | 0 = preferred scaling             |
|      | 1 = parameter scaling             |
| 4    | Reserved :                        |
|      | Units for force scaling           |
|      | 0 = metres                        |
|      | 1 = inches                        |
| 4    | Reserved :                        |
|      | Units for rotation scaling        |
|      | 0 = Newton (N)                    |
|      | 1 = pound force (lbf)             |
| 5    | Reserved                          |
| 6    | Reserved :                        |
|      | Data reference                    |
|      | 0 = at the motor shaft            |
|      | 1 = at the load                   |
| 7-15 | Reserved                          |

| IDN S-0-0087 Transmit to Transmit Recovery Time (t <sub>ATAT</sub> ) |                  |
|----------------------------------------------------------------------|------------------|
|                                                                      |                  |
| Data Length                                                          | 2 bytes          |
| Data Type                                                            | Unsigned integer |
| Minimum Value                                                        |                  |
| Maximum Value                                                        |                  |
| Scaling/Unit                                                         | Usec             |
| Read                                                                 | CP2-4            |
| Write                                                                | N/A              |
| Default                                                              | 0                |

This parameter defines the time required between two ATs when sent by the same slave. This time is read by the master during CP2 in order to calculate correctly the AT transmission starting time (IDN 6).

This parameter is only required for slaves capable of controlling several drives, and hence is not supported.

| IDN S-0-0088 Receive to Receive Recovery Time (t <sub>MTSY</sub> ) – read only |                  |
|--------------------------------------------------------------------------------|------------------|
|                                                                                |                  |
| Data Length                                                                    | 2 bytes          |
| Data Type                                                                      | Unsigned integer |
| Minimum Value                                                                  |                  |
| Maximum Value                                                                  |                  |
| Scaling/Unit                                                                   | usec             |
| Read                                                                           | CP2-4            |
| Write                                                                          | N/A              |
| Default                                                                        | 150              |

This parameter defines the time the slave drive requires between the MDT and the next MST. The master reads this parameter during CP2 in order to calculate the MDT transmission time.

| IDN S-0-0089 MDT Transmission Starting Time (t <sub>2</sub> ) |                  |
|---------------------------------------------------------------|------------------|
|                                                               |                  |
| Data Length                                                   | 2 bytes          |
| Data Type                                                     | Unsigned integer |
| Minimum Value                                                 | 0                |
| Maximum Value                                                 | IDN 2            |
| Scaling/Unit                                                  | usec             |
| Read                                                          | CP2-4            |
| Write                                                         | CP2              |
| Default                                                       | 500              |

This parameter defines when the master shall send its MDT during CP3 and CP4 (the time interval after the MST). The master writes this value to all the slaves in the ring during CP2.

| IDN S-0-0090 Command Value Proceeding (processing) Time ( $t_{MTSG}$ ) |                  |
|------------------------------------------------------------------------|------------------|
|                                                                        |                  |
| Data Length                                                            | 2 bytes          |
| Data Type                                                              | Unsigned integer |
| Minimum Value                                                          | 0                |
| Maximum Value                                                          | IDN 2            |
| Scaling/Unit                                                           | usec             |
| Read                                                                   | CP2-4            |
| Write                                                                  | N/A              |
| Default                                                                | 10               |

This parameter defines the time required by the drive from the end of the MDT to the point at which the command data is used. The master reads this value from all the slaves in the ring during CP2 in order to correctly calculate the command value valid time (IDN 8) to be used by the ring during CP3 and CP4.

| IDN S-0-0091 Bipolar velocity limit value |                     |
|-------------------------------------------|---------------------|
|                                           |                     |
| Data Length                               | 4 bytes             |
| Data Type                                 | Unsigned Integer    |
| Minimum Value                             | 0                   |
| Maximum Value                             | $+2^{31}-1$         |
| Scaling/Unit                              |                     |
| Read                                      | CP2-4               |
| Write                                     | CP2-4               |
| Default                                   | +2 <sup>31</sup> -1 |
|                                           |                     |

This parameter defines the maximum allowable velocity in both directions. If this limit is exceeded the drive sets the status ' $n_{command}$ > $n_{limit}$ ' in C3D (See IDN 13).

| Scaling Type     | IDN 44 |
|------------------|--------|
| Scaling Factor   | IDN 45 |
| Scaling Exponent | IDN 46 |

| IDN S-0-0092 Bipolar torque limit value |                     |
|-----------------------------------------|---------------------|
|                                         |                     |
| Data Length                             | 2 bytes             |
| Data Type                               | Unsiged Integer     |
| Minimum Value                           | 0                   |
| Maximum Value                           | +2 <sup>15</sup> -1 |
| Scaling/Unit                            |                     |
| Read                                    | CP2-4               |
| Write                                   | CP2-4               |
| Default                                 | +2 <sup>15</sup> -1 |

This parameter defines the maximum allowable torque in both directions. If this limit is exceeded the drive sets the status  $T>=T_{limit}$  in C3D (See IDN 13).

| Scaling Type     | IDN 86 |
|------------------|--------|
| Scaling Factor   | IDN 93 |
| Scaling Exponent | IDN 94 |

| IDN S-0-0095 Diagnostic Message |                                        |
|---------------------------------|----------------------------------------|
|                                 |                                        |
| Data Length                     | 1 byte elements, variable length array |
| Data Type                       | Text                                   |
| Minimum Value                   |                                        |
| Maximum Value                   |                                        |
| Scaling/Unit                    |                                        |
| Read                            | CP2-4                                  |
| Write                           | N/A                                    |
| Default                         |                                        |

This parameter holds a diagnostic message describing the current drive operating status.

| IDN S-0-0096 Slave Arrangement |                                                                                                                                   |
|--------------------------------|-----------------------------------------------------------------------------------------------------------------------------------|
|                                |                                                                                                                                   |
| Data Length                    | 2 bytes                                                                                                                           |
| Data Type                      | Unsigned integer                                                                                                                  |
| Minimum Value                  | 1 (if 0 is used the drive acts only as a repeater on the network, and does not participate in any master – slave communications.) |
| Maximum Value                  | 254                                                                                                                               |
| Scaling/Unit                   |                                                                                                                                   |
| Read                           | CP2-4                                                                                                                             |
| Write                          | N/A                                                                                                                               |
| Default                        |                                                                                                                                   |

The drives SERCOS network address is contained in both the upper and lower bytes of this parameter.

If a slave can control more than one drive, then this parameter is used by the master during initialisation to recognize which physical slaves are their associated drives are present in the network in order to optimize the automatic timeslot computation.

| IDN S-0-0097 Mask for Class 2 Diagnostics |         |
|-------------------------------------------|---------|
|                                           |         |
| Data Length                               | 2 Bytes |
| Data Type                                 | Binary  |
| Minimum Value                             | 0       |
| Maximum Value                             | 0Xffff  |
| Scaling/Unit                              |         |
| Read                                      | CP2-4   |
| Write                                     | CP2-4   |
| Default                                   | 0xFFFF  |

This mask is used to prevent the change in state of class 2 diagnostic flags (see IDN 12) from effecting the C2D change bit in the drive status. The structure is as per the C2D, and the mask bit is cleared (to '0') to prevent the C2D flag from affecting the change bit. The mask does not affect the operation data of the C2D.

| IDN S-0-0098 Mask for Class 3 Diagnostics |         |
|-------------------------------------------|---------|
|                                           |         |
| Data Length                               | 2 Bytes |
| Data Type                                 | Binary  |
| Minimum Value                             | 0       |
| Maximum Value                             | 0xFFFF  |
| Scaling/Unit                              |         |
| Read                                      | CP2-4   |
| Write                                     | CP2-4   |
| Default                                   | 0xFFFF  |

This mask is used to prevent the change in state of class 3 diagnostic flags (see IDN 13) from effecting the C3D change bit in the drive status. The structure is as per the C3D, and the mask bit is cleared (to '0') to prevent the C3D flag from affecting the change bit. The mask does not affect the operation data of the C3D.

| IDN S-0-0099 Reset Class 1 Diagnostics |                            |
|----------------------------------------|----------------------------|
|                                        |                            |
| Data Length                            | 2 bytes                    |
| Data Type                              | Binary (Procedure Command) |
| Minimum Value                          |                            |
| Maximum Value                          |                            |
| Scaling/Unit                           |                            |
| Read                                   |                            |
| Write                                  | CP2-4                      |
| Default                                | 0                          |

When this procedure command is received by the drive via the service channel any latched faults which have now been removed in C1D (IDN 11), the interface status (IDN 14) and the manufacturer's C1D (IDN 129) will be cleared. If all faults have been cleared the drive shut-down error flag (drive status bit 13), and the drive shut-down mechanism in the drive will be reset.

| IDN S-0-0103 Modulo value |                  |  |
|---------------------------|------------------|--|
|                           |                  |  |
| Data Length               | 4 bytes          |  |
| Data Type                 | Unsigned Integer |  |
| Minimum Value             | >= 1             |  |
| Maximum Value             | $<=+2^{31}-1$    |  |
| Scaling/Unit              |                  |  |
| Read                      | CP2-4            |  |
| Write                     | CP2-4            |  |
| Default                   | 0                |  |

This parameter is selected in the 'position data scaling' parameter (IDN 00076), and defines the range the drive and controller must implement

| Scaling Type                   | IDN 76 |
|--------------------------------|--------|
| Scaling Factor                 | IDN 77 |
| Scaling Exponent               | IDN 78 |
| Rotational Position Resolution | IDN 79 |

| IDN S-0-0104 Position Loop K <sub>v</sub> factor |                  |
|--------------------------------------------------|------------------|
|                                                  |                  |
| Data Length                                      | 2 bytes          |
| Data Type                                        | Unsigned integer |
| Minimum Value                                    | 0                |
| Maximum Value                                    | 655.35           |
| Scaling/Unit                                     | 0.01 (m/min)/mm  |
| Read                                             | CP2-4            |
| Write                                            | CP2              |
| Default                                          |                  |

This parameter defines the proportional gain of the position loop controller.

| IDN S-0-0123 Feed Constant |                  |
|----------------------------|------------------|
|                            |                  |
| Data Length                | 4 bytes          |
| Data Type                  | Unsigned integer |
| Minimum Value              | 0                |
| Maximum Value              | $+2^{32}-1$      |
| Scaling/Unit               |                  |
| Read                       | CP2-4            |
| Write                      | CP2-4            |
| Default                    |                  |

This parameter defines the conversion between a rotational motion into a linear motion (indicating the linear distance moved during one revolution of the feed spindle).

| IDN S-0-0124 Standstill Window |                    |
|--------------------------------|--------------------|
|                                |                    |
| Data Length                    | 4 bytes            |
| Data Type                      | Unsigned integer   |
| Minimum Value                  | 0                  |
| Maximum Value                  | 2 <sup>31</sup> -1 |
| Scaling/Unit                   |                    |
| Read                           | CP2-4              |
| Write                          | CP2-4              |
| Default                        | 0                  |

This parameter defines a velocity threshold below which the motor is not considered to be moving. If the velocity feedback value is within this window the drive sets the C3D status bit  $n_{feedback}=0'$  (see IDN 13).

| Scaling Type     | IDN 44 |
|------------------|--------|
| Scaling Factor   | IDN 45 |
| Scaling Exponent | IDN 46 |

| IDN S-0-0125 Velocity Threshold (n <sub>x</sub> ) |                     |
|---------------------------------------------------|---------------------|
|                                                   |                     |
| Data Length                                       | 4 bytes             |
| Data Type                                         | Unsigned integer    |
| Minimum Value                                     | 0                   |
| Maximum Value                                     | +2 <sup>31</sup> -1 |
| Scaling/Unit                                      |                     |
| Read                                              | CP2-4               |
| Write                                             | CP2-4               |
| Default                                           | 0                   |

If the velocity feedback falls below this parameter value the drive sets the C3D status bit  $n_{feedback} < n_{x'}$  (see IDN 13).

| Scaling Type     | IDN 44 |
|------------------|--------|
| Scaling Factor   | IDN 45 |
| Scaling Exponent | IDN 46 |

| IDN S-0-0127 CP3 Transition Check |                            |
|-----------------------------------|----------------------------|
|                                   |                            |
| Data Length                       | 2 bytes                    |
| Data Type                         | Binary (Procedure Command) |
| Minimum Value                     |                            |
| Maximum Value                     |                            |
| Scaling/Unit                      |                            |
| Read                              |                            |
| Write                             | CP2                        |
| Default                           | 0                          |

This procedure command identifies whether the drive is ready to switch from CP2 to CP3, and must be executed before the transition can occur.

When this procedure command is executed the drive will check whether the master has transferred all necessary parameters for transition into CP3. If the drive believes any parameters are invalid or have not been configured, it will return a failure result and store the list of invalid parameter IDNs in the 'CP2 IDN list of invalid operation data' (IDN 21). After the procedure command has been executed the master must cancel the procedure.

| IDN S-0-0128 CP4 Transition Check |                            |
|-----------------------------------|----------------------------|
|                                   |                            |
| Data Length                       | 2 bytes                    |
| Data Type                         | Binary (Procedure Command) |
| Minimum Value                     |                            |
| Maximum Value                     |                            |
| Scaling/Unit                      |                            |
| Read                              |                            |
| Write                             | CP3                        |
| Default                           | 0                          |

This procedure command identifies whether the drive is ready to switch from CP3 to CP4, and must be executed before the transition can occur.

When this procedure command is executed the drive will check whether the master has transferred all necessary parameters for transition into CP4. If the drive believes any parameters are invalid or have not been configured, it will return a failure result and store the list of invalid parameter IDNs in the 'CP3 IDN list of invalid operation data' (IDN 22). After the procedure command has been executed the master must cancel the procedure.

| IDN S-0-0129 Manufacturer Class 1 Diagnostics |         |
|-----------------------------------------------|---------|
|                                               |         |
| Data Length                                   | 2 Bytes |
| Data Type                                     | Binary  |
| Minimum Value                                 | 0       |
| Maximum Value                                 | 0xFFFF  |
| Scaling/Unit                                  |         |
| Read                                          | CP2-4   |
| Write                                         | N/A     |
| Default                                       | None    |

This parameter is used to identify additional (to the C1D (IDN 11)) drive shutdown faults. If an error is set in this parameter, the manufacturer specific error bit is set in the C1D as well. The error is latched in this parameter, and only cleared when the 'reset class 1

diagnostic' (IDN 99) is executed via the service channel after the manufacturer C1D has been eliminated.

| Bit | Description                                             |
|-----|---------------------------------------------------------|
| 0   | Parameter Breakdown (SDGH Alarm Code 0x002)             |
| 1   | Main Circuit Error (SDGH Alarm Code 0x003)              |
| 2   | Parameter Setting Error (SDGH Alarm Code 0x004)         |
| 3   | Servomotor – amplifier mismatch (SDGH Alarm Code 0x005) |
| 4   | Regeneration Error (SDGH Alarm Code 0x030)              |
| 5   | Regeneration Overload (SDGH Alarm Code 0x032)           |
| 6   | Overspeed (SDGH Alarm Code 0x051)                       |
| 7   | Dynamic Brake Overload (SDGH Alarm Code 0x073)          |
| 8   | Surge Current Resistor overload (SDGH Alarm Code 0x074) |
| 9   | Motor Runaway (SDGH Alarm Code 0x0C1)                   |
| 10  | Watchdog Error (SDGH Alarm Code 0x0E2)                  |
| 11  | Operation mode setting error (SDGH Alarm Code 0x0E5)    |
| 12  | Reserved                                                |
| 13  | Reserved                                                |
| 14  | Reserved                                                |
| 15  | Reserved                                                |

Where 0 = no fault, 1 = fault.

Refer to the 'Sigma II Series Users Manual' for alarm causes and remedies.

| IDN S-0-0130 Probe 1 Positive Edge Value |                     |  |
|------------------------------------------|---------------------|--|
|                                          |                     |  |
| Data Length                              | 4 bytes             |  |
| Data Type                                | Integer             |  |
| Minimum Value                            | -2 <sup>31</sup>    |  |
| Maximum Value                            | +2 <sup>31</sup> -1 |  |
| Scaling/Unit                             |                     |  |
| Read                                     | CP2-4               |  |
| Write                                    | N/A                 |  |
| Default                                  | 0                   |  |

The Probing Cycle Procedure (IDN 00170) is used to capture the motor position when an external input changes. This 'Probe 1 Positive Edge Value' parameter holds that captured position value when the probe procedure is configured (through the probe control parameter (IDN 00169)) to capture the position on a rising edge.

| Scaling Type                   | IDN 76 |
|--------------------------------|--------|
| Scaling Factor                 | IDN 77 |
| Scaling Exponent               | IDN 78 |
| Rotational Position Resolution | IDN 79 |

| IDN S-0-0131 Probe 1 Negative Edge Value |                     |  |
|------------------------------------------|---------------------|--|
|                                          |                     |  |
| Data Length                              | 4 bytes             |  |
| Data Type                                | Integer             |  |
| Minimum Value                            | -2 <sup>31</sup>    |  |
| Maximum Value                            | +2 <sup>31</sup> -1 |  |
| Scaling/Unit                             |                     |  |
| Read                                     | CP2-4               |  |
| Write                                    | N/A                 |  |
| Default                                  | 0                   |  |

The Probing Cycle Procedure (IDN 00170) is used to capture the motor position when an external input changes. This 'Probe 1 Negative Edge Value' parameter holds that captured position value when the probe procedure is configured (through the probe control parameter (IDN 00169)) to capture the position on a falling edge.

| Scaling Type                   | IDN 76 |
|--------------------------------|--------|
| Scaling Factor                 | IDN 77 |
| Scaling Exponent               | IDN 78 |
| Rotational Position Resolution | IDN 79 |

| IDN S-0-0134 Master Control Word |                  |
|----------------------------------|------------------|
|                                  |                  |
| Data Length                      | 2 Bytes          |
| Data Type                        | Unsigned integer |
| Minimum Value                    |                  |
| Maximum Value                    |                  |
| Scaling/Unit                     |                  |
| Read                             | CP2-4            |
| Write                            | N/A              |
| Default                          |                  |

This parameter enables the master control word to be read over the service channel. The structure of this control word is :

| Bit      | Description                              |
|----------|------------------------------------------|
| 0        | Service channel handshake                |
| 1        | Service channel read/write flag          |
| 2        | Service channel transmission in progress |
| 3,4,5    | Service channel data block element       |
| 6        | Real-time control bit 1                  |
| 7        | Real-time control bit 2                  |
| 8,9,11   | Operation mode                           |
| 10       | IPOSYNC: control unit synchronisation    |
| 12       | Reserved                                 |
| 13,14,15 | Drive command values                     |

| IDN S-0-0135 Drive Status Word |                  |
|--------------------------------|------------------|
|                                |                  |
| Data Length                    | 2 Bytes          |
| Data Type                      | Unsigned integer |
| Minimum Value                  |                  |
| Maximum Value                  |                  |
| Scaling/Unit                   |                  |
| Read                           | CP2-4            |
| Write                          | N/A              |
| Default                        |                  |

This parameter enables the drive status word word to be read over the service channel. The structure of this status word is :

| Bit    | Description                                                       |
|--------|-------------------------------------------------------------------|
| 0      | Service channel handshake                                         |
| 1      | Service channel busy flag                                         |
| 2      | Error in service channel flag                                     |
| 3      | Status of command values processing (0: drive will ignore command |
|        | values, 1: drive will follow command values.)                     |
| 4      | Reserved                                                          |
| 5      | Procedure command change bit                                      |
| 6      | Real time status bit 1                                            |
| 7      | Real time status bit 2                                            |
| 8,9,10 | Actual operation mode                                             |
| 11     | Change bit for Class 3 diagnostics                                |
| 12     | Change bit for Class 2 diagnostics                                |
| 13     | Drive shutdown error flag, in Class 1 diagnostics                 |
| 14,15  | Drive status                                                      |

| IDN S-0-0138 Bipolar Acceleration limit value |                     |
|-----------------------------------------------|---------------------|
|                                               |                     |
| Data Length                                   | 4 bytes             |
| Data Type                                     | Unsigned Integer    |
| Minimum Value                                 | 0                   |
| Maximum Value                                 | +2 <sup>31</sup> -1 |
| Scaling/Unit                                  |                     |
| Read                                          | CP2-4               |
| Write                                         | CP2-4               |
| Default                                       | 0                   |

This parameter defines the maximum acceleration of the drive.

| Scaling Type     | IDN 160 |
|------------------|---------|
| Scaling Factor   | IDN 161 |
| Scaling Exponent | IDN 162 |

| IDN S-0-0140 Controller Type |                               |
|------------------------------|-------------------------------|
|                              |                               |
| Data Length                  |                               |
| Data Type                    | 1 byte, variable length array |
| Minimum Value                |                               |
| Maximum Value                |                               |
| Scaling/Unit                 |                               |
| Read                         | CP2-4                         |
| Write                        | N/A                           |
| Default                      | "TRIO"                        |

This parameter contains the company name of the manufacturer, and the controller type.

| IDN S-0-0141 Motor Type |                               |
|-------------------------|-------------------------------|
|                         |                               |
| Data Length             |                               |
| Data Type               | 1 byte, variable length array |
| Minimum Value           |                               |
| Maximum Value           |                               |
| Scaling/Unit            |                               |
| Read                    | CP2-4                         |
| Write                   | N/A                           |
| Default                 | "MOTOR TYPE"                  |

This parameter contains the motor type.

| IDN S-0-0142 Application Type |                               |  |
|-------------------------------|-------------------------------|--|
|                               |                               |  |
| Data Length                   |                               |  |
| Data Type                     | 1 byte, variable length array |  |
| Minimum Value                 |                               |  |
| Maximum Value                 |                               |  |
| Scaling/Unit                  |                               |  |
| Read                          | CP2-4                         |  |
| Write                         | N/A                           |  |
| Default                       | "APP TYPE"                    |  |

This parameter contains the type of the drive application.

| IDN S-0-0143 SERCOS Interface Version |                               |  |
|---------------------------------------|-------------------------------|--|
|                                       |                               |  |
| Data Length                           |                               |  |
| Data Type                             | 1 byte, variable length array |  |
| Minimum Value                         |                               |  |
| Maximum Value                         |                               |  |
| Scaling/Unit                          |                               |  |
| Read                                  | CP2-4                         |  |
| Write                                 | N/A                           |  |
| Default                               |                               |  |

This parameter contains the version of the SERCOS interface specification supported.

| IDN S-0-0147 Homing Parameter |         |
|-------------------------------|---------|
|                               |         |
| Data Length                   | 2 Bytes |
| Data Type                     | Binary  |
| Minimum Value                 | 0       |
| Maximum Value                 | 0xFFFF  |
| Scaling/Unit                  |         |
| Read                          | CP2-4   |
| Write                         | N/A     |
| Default                       | None    |

This parameter is used to configure the homing procedure.

| Bit     | Description                                                        |
|---------|--------------------------------------------------------------------|
| 0       | Homing Direction                                                   |
|         | 0 - positive: motor shaft turns clockwise                          |
|         | 1 - negative: motor shaft turns counter-clockwise.                 |
| 1       | Reserved: Position Feedback Marker Pulse                           |
|         | 0 - first marker pulse after the positive edge of the home switch. |
|         | 1 - first marker pulse after the negative edge of the home switch. |
| 2       | Reserved: Home Switch (00400)                                      |
|         | 0 - connected to the control unit                                  |
|         | 1 - connected to the drive                                         |
| 3       | Reserved: Homing                                                   |
|         | 0 - using motor feedback                                           |
|         | 1 - using external feedback                                        |
| 4       | Reserved: Interpretation in the drive                              |
|         | 0 - home switch and homing enabled (IDN 00407)                     |
|         | 1 - homing enable only                                             |
| 5       | Evaluation of home switch                                          |
|         | 0 - home switch is evaluated                                       |
| _       | 1 - home switch is not evaluated                                   |
| 6       | Evaluation of position feedback marker pulse                       |
|         | 0 - position feedback marker pulse is evaluated                    |
| _       | 1 - position feedback marker pulse is not evaluated                |
| 7       | Reserved: Position after drive controlled homing                   |
|         | 0 - drive is positioned at an arbitrary position                   |
| 0       | 1 - drive is positioned at the ref position (IDN 00052/00054)      |
| 8       | Reserved: Drive controlled homing with homing distance             |
|         | 0 - homing distance is selected (IDN 00297)                        |
| 0       | 1 - homing distance is not selected<br>Reserved:                   |
| 9<br>10 | Reserved:                                                          |
| 11      | Reserved:                                                          |
| 12      |                                                                    |
| 12      | Reserved                                                           |
| 13      | Reserved                                                           |
|         | Reserved                                                           |
| 15      | Reserved                                                           |

| IDN S-0-0148 Drive Controlled Homing Procedure Command |                            |  |
|--------------------------------------------------------|----------------------------|--|
|                                                        |                            |  |
| Data Length                                            | 2 bytes                    |  |
| Data Type                                              | Binary (Procedure Command) |  |
| Minimum Value                                          |                            |  |
| Maximum Value                                          |                            |  |
| Scaling/Unit                                           |                            |  |
| Read                                                   |                            |  |
| Write                                                  | CP4                        |  |
| Default                                                | 0                          |  |

| Bits 15-2 | (Reserved)                            |  |
|-----------|---------------------------------------|--|
| Bit 1     |                                       |  |
| 0         | Interrupt procedure command execution |  |
| 1         | Enable procedure command execution    |  |
| Bit 0     |                                       |  |
| 0         | Cancel procedure command              |  |
| 1         | Set procedure command                 |  |

This procedure command runs the drive controlled homing routine, during which the drive enters an internal position control mode and homes the drive. Whilst the command is running, and until the command is cancelled, the drive will not respond to position control commands issued by the control unit.

The following conditions must be met prior to executing this command.

1. The drive must be configured in position control mode.

The SERCOS homing IDNs must be set as required (including Homing Velocity (IDN 00041), Homing Acceleration (IDN 00042) and the Homing Parameter (IDN 00147).
 The proprietary SERCOS homing IDNs must be set as required including Homing Mode (IDN 49408), Homing Trigger Input (IDN 49409) and Homing Creep Velocity (IDN 49410).

3. The drive must be enabled.

4. The probe procedure command must not be run until the homing procedure command has completed and been cancelled.

The drive shall set the procedure command change bit (bit 5 of the status word) when homing has been completed. The control unit must then read the position feedback, update the position command accordingly before cancelling the procedure command. When the command is cancelled, position control will return to the control unit.

Whilst the procedure command is running, the Home Switch (IDN 00400) shall be set when the home switch is recognized, and the Position Value Feedback Status (IDN 00403) is set when the origin (z-mark) is recognized.

If Bit 1 is set to 0 during the homing, the motor speed will be ramped down to zero at the programmed acceleration rate. When Bit 1 is set to 1 again, the homing procedure will continue at the programmed speeds. (V 0.0.30 and later)

| IDN S-0-0150 Reference offset 1 |                     |
|---------------------------------|---------------------|
|                                 |                     |
| Data Length                     | 4 bytes             |
| Data Type                       | Signed Integer      |
| Minimum Value                   | -2 <sup>31</sup>    |
| Maximum Value                   | +2 <sup>31</sup> -1 |
| Scaling/Unit                    |                     |
| Read                            | CP2-4               |
| Write                           | CP2-4               |
| Default                         | 0                   |

This parameter is used during homing to determine the motor's position feedback relative to the machine zero point. It is the distance between the home marker to the home position.

| Scaling Type                   | IDN 76 |
|--------------------------------|--------|
| Scaling Factor                 | IDN 77 |
| Scaling Exponent               | IDN 78 |
| Rotational Position Resolution | IDN 79 |

| IDN S-0-0151 Reference offset 2 |                     |
|---------------------------------|---------------------|
|                                 |                     |
| Data Length                     | 4 bytes             |
| Data Type                       | Signed Integer      |
| Minimum Value                   | -2 <sup>31</sup>    |
| Maximum Value                   | +2 <sup>31</sup> -1 |
| Scaling/Unit                    |                     |
| Read                            | CP2-4               |
| Write                           | CP2-4               |
| Default                         | 0                   |

This parameter is used during homing to determine the motor's position feedback relative to the machine zero point - when the motor's position is defined by reference feedback 2. It is the distance between the home marker to the home position.

| Scaling Type                   | IDN 76 |
|--------------------------------|--------|
| Scaling Factor                 | IDN 77 |
| Scaling Exponent               | IDN 78 |
| Rotational Position Resolution | IDN 79 |

| IDN S-0-0157 Velocity Window |                     |
|------------------------------|---------------------|
|                              |                     |
| Data Length                  | 4 bytes             |
| Data Type                    | Unsigned Integer    |
| Minimum Value                | 0                   |
| Maximum Value                | +2 <sup>31</sup> -1 |
| Scaling/Unit                 |                     |
| Read                         | CP2-4               |
| Write                        | CP2-4               |
| Default                      | +2 <sup>31</sup> -1 |

If the current velocity feedback value is within the velocity window the drive sets the C3D status ' $n_{feedback} = n_{command}$ ' (see IDN 11).

| Scaling Type     | IDN 44 |
|------------------|--------|
| Scaling Factor   | IDN 45 |
| Scaling Exponent | IDN 46 |

| IDN S-0-0159 Monitoring Window |                  |
|--------------------------------|------------------|
|                                |                  |
| Data Length                    | 4 bytes          |
| Data Type                      | Unsigned Integer |
| Minimum Value                  | 0                |
| Maximum Value                  | $+2^{31}-1$      |
| Scaling/Unit                   |                  |
| Read                           | CP2-4            |
| Write                          | CP2-4            |
| Default                        | $+2^{31}-1$      |

This parameter defines the maximum position error. When the absolute distance between the position command and the active position feedback value exceeds this value, the drive sets an error for 'excessive position deviation' in C1D (see IDN 11)

| Scaling Type                   | IDN 76 |
|--------------------------------|--------|
| Scaling Factor                 | IDN 77 |
| Scaling Exponent               | IDN 78 |
| Rotational Position Resolution | IDN 79 |

| IDN S-0-0160 Acceleration Data Scaling Type |         |  |
|---------------------------------------------|---------|--|
|                                             |         |  |
| Data Length                                 | 2 bytes |  |
| Data Type                                   | Binary  |  |
| Minimum Value                               |         |  |
| Maximum Value                               |         |  |
| Scaling/Unit                                |         |  |
| Read                                        | CP2-4   |  |
| Write                                       | CP2-4   |  |
| Default                                     | 0       |  |

This parameter defines the acceleration data scaling. Currently only 'no scaling' is supported.

| Bit |                                     |
|-----|-------------------------------------|
| 2-0 | Scaling Method                      |
|     | 000 – no scaling                    |
|     | 001 – reserved - linear scaling     |
|     | 010 – reserved - rotational scaling |
| 3   | Reserved :                          |
|     | 0 – preferred scaling               |
|     | 1 – parameter scaling               |
| 4   | Reserved :                          |
|     | Units for linear scaling            |
|     | 0 – metres                          |
|     | 1 – inches                          |
|     | Units for rotational scaling        |
|     | 0 – radian                          |
|     | 1 – reserved                        |
| 5   | Reserved :                          |

|      | Time Units<br>0 – seconds<br>1 – reserved                                 |
|------|---------------------------------------------------------------------------|
| 6    | Reserved :<br>Data Reference<br>0 – at the motor shaft<br>1 – at the load |
| 15-7 | Reserved                                                                  |

| IDN S-0-0169 Probe Control Parameter |         |
|--------------------------------------|---------|
|                                      |         |
| Data Length                          | 2 bytes |
| Data Type                            | Binary  |
| Minimum Value                        |         |
| Maximum Value                        |         |
| Scaling/Unit                         |         |
| Read                                 | CP2-4   |
| Write                                | CP2-4   |
| Default                              | 0       |

This parameter defines the probe and signal edge that will trigger a position capture whilst the probing cycle procedure command (IDN 00170) is activated.

| Bit  | Description                                 |
|------|---------------------------------------------|
| 0    | Probe 1 capture on positive edge.           |
| 1    | Probe 1 capture on negative edge.           |
| 2    | Reserved: Probe 2 capture on positive edge. |
| 3    | Reserved: Probe 2 capture on negative edge. |
| 4-15 | Reserved                                    |

Where 0 : inactive, 1 : active.

| IDN S-0-0170 Probing Cycle Procedure Command |                            |
|----------------------------------------------|----------------------------|
|                                              |                            |
| Data Length                                  | 2 bytes                    |
| Data Type                                    | Binary (Procedure Command) |
| Minimum Value                                |                            |
| Maximum Value                                |                            |
| Scaling/Unit                                 |                            |
| Read                                         |                            |
| Write                                        | CP4                        |
| Default                                      | 0                          |

When this procedure command is received by the drive via the service channel it will start to monitor the probe input, and record the motor (external) position when a change occurs on this input. The drive will continue to monitor the probe input until either this procedure command is cancelled, or an error occurs.

One probe input is available, which will trigger a position capture when either a rising or falling edge is seen on the input.

After the master has armed the probe - by setting the Probe 1 Enable Signal (IDN 00405) - the next rising or falling edge – as defined by the Probe Control Parameter (IDN

00169) – will trigger the probe 1 input (IDN 00401) and set a bit in the Probe Status Parameter (IDN 00179). The master is then able to read the latched motor position from either the Probe 1 positive edge value (IDN 00130) or Probe 1 negative edge value (IDN 00131). Any further changes on the probe input will be ignored until the master has rearmed the probe trigger by clearing and setting the probe enable signal.

| IDN S-0-0179 Probe Status |         |
|---------------------------|---------|
|                           |         |
| Data Length               | 2 bytes |
| Data Type                 | Binary  |
| Minimum Value             |         |
| Maximum Value             |         |
| Scaling/Unit              |         |
| Read                      | CP2-4   |
| Write                     | N/A     |
| Default                   | 0       |

This parameter identifies when a position has been captured whilst the probing cycle command is activated. If the required edge arrives on the input the position is captured and stored (in IDN 00130 or 00131 depending upon the edge), and the assigned bit in the probe status is set.

The probe status is cleared to zero when the master resets the probe enable (IDN 00405) or cancels the probing cycle procedure command (IDN 00170).

| Bit  | Description                                             |
|------|---------------------------------------------------------|
| 0    | Probe 1 positive edge latched (see IDN 00409)           |
| 1    | Probe 1 negative edge latched (see IDN 00410)           |
| 2    | Reserved: Probe 2 positive edge latched (see IDN 00411) |
| 3    | Reserved: Probe 2 negative edge latched (see IDN 00412) |
| 4-15 | Reserved                                                |

Where 0 : not latched, 1 : latched.

| IDN S-0-0181 Manufacturer Class 2 Diagnostics |         |
|-----------------------------------------------|---------|
|                                               |         |
| Data Length                                   | 2 bytes |
| Data Type                                     | Binary  |
| Minimum Value                                 |         |
| Maximum Value                                 |         |
| Scaling/Unit                                  |         |
| Read                                          | CP2-4   |
| Write                                         | N/A     |
| Default                                       |         |

The Manufacturer C2D identifies warnings of an impending drive shutdown error. When a warning is activated in the Manufacturer C2D, this sets (to '1') – and latches – the Manufacturer specific warning bit in C2D (IDN 12) and the change bit in the drive status. When the Manufacturer C2D is read via the service channel, the Manufacturer specific warning bit is reset (to '0') in the C2D. The warning bits in the Manufacturer C2D are not latched, and hence are automatically reset when the warning condition is no longer valid.

| Bit | Description                   |
|-----|-------------------------------|
| 0   | Regenerative Overload warning |
| 1   | Reserved                      |
| 2   | Reserved                      |
| 3   | Reserved                      |
| 4   | Reserved                      |
| 5   | Reserved                      |
| 6   | Reserved                      |
| 7   | Reserved                      |
| 8   | Reserved                      |
| 9   | Reserved                      |
| 10  | Reserved                      |
| 11  | Reserved                      |
| 12  | Reserved                      |
| 13  | Reserved                      |
| 14  | Reserved                      |
| 15  | Reserved                      |

Where 0 = no shutdown warning, 1 = shutdown warning.

| IDN S-0-0185 Max length of configurable data in the AT |                  |  |
|--------------------------------------------------------|------------------|--|
|                                                        |                  |  |
| Data Length                                            | 2 bytes          |  |
| Data Type                                              | unsigned Integer |  |
| Minimum Value                                          |                  |  |
| Maximum Value                                          |                  |  |
| Scaling/Unit                                           |                  |  |
| Read                                                   | CP2-4            |  |
| Write                                                  | N/A              |  |
| Default                                                |                  |  |

This parameter defines the maximum length in bytes which the drive can support for the configurable section of the AT.

| IDN S-0-0186 Max length of configurable data in the MDT |                  |  |
|---------------------------------------------------------|------------------|--|
|                                                         |                  |  |
| Data Length                                             | 2 bytes          |  |
| Data Type                                               | unsigned Integer |  |
| Minimum Value                                           |                  |  |
| Maximum Value                                           |                  |  |
| Scaling/Unit                                            |                  |  |
| Read                                                    | CP2-4            |  |
| Write                                                   | N/A              |  |
| Default                                                 |                  |  |

This parameter defines the maximum length in bytes which the drive can support for the configurable section of the MDT.

| IDN S-0-0187 IDN List of Configurable Data in the AT |                                        |  |
|------------------------------------------------------|----------------------------------------|--|
|                                                      |                                        |  |
| Data Length                                          | 2 byte elements, variable length array |  |
| Data Type                                            | IDN List                               |  |
| Minimum Value                                        |                                        |  |
| Maximum Value                                        |                                        |  |
| Scaling/Unit                                         |                                        |  |
| Read                                                 | CP2-4                                  |  |
| Write                                                | N/A                                    |  |
| Default                                              |                                        |  |

This parameter contains a list of the IDNs of operation data which can be processed by the drive cyclically as feedback values. The selected values are written to the AT Configuration List (IDN 16) by the master during CP2, and are only valid when the custom telegram type is selected (IDN 15).

| IDN S-0-0188 IDN List of Configurable Data in the MDT. |                                        |  |
|--------------------------------------------------------|----------------------------------------|--|
|                                                        |                                        |  |
| Data Length                                            | 2 byte elements, variable length array |  |
| Data Type                                              | IDN List                               |  |
| Minimum Value                                          |                                        |  |
| Maximum Value                                          |                                        |  |
| Scaling/Unit                                           |                                        |  |
| Read                                                   | CP2-4                                  |  |
| Write                                                  | CP2                                    |  |
| Default                                                |                                        |  |

This parameter contains a list of the IDNs of operation data which can be processed by the drive cyclically as command values. The selected values are written to the MDT Configuration List (IDN 24) by the master during CP2, and are only valid when the custom telegram type is selected (IDN 15).

| IDN S-0-0189 Following Distance |                        |
|---------------------------------|------------------------|
|                                 |                        |
| Data Length                     | 4 bytes                |
| Data Type                       | Signed Integer         |
| Minimum Value                   | -2 <sup>31</sup>       |
| Maximum Value                   | +2 <sup>31</sup> -1    |
| Scaling/Unit                    | Counts (Encoder edges) |
| Read                            | CP2-4                  |
| Write                           | N/A                    |
| Default                         |                        |

The P730 fetches the value of Analogue Monitor 1 from the drive and writes the value to this parameter. To enable the drive for monitoring the position error value, the drive parameter Pn003.0 must be set to 4. (Version 0.0.30 software)

| Scaling Type                   | IDN 76 |
|--------------------------------|--------|
| Scaling Factor                 | IDN 77 |
| Scaling Exponent               | IDN 78 |
| Rotational Position Resolution | IDN 79 |

Only the '<u>no scaling'</u> option is supported.

| IDN S-0-0206 Drive on delay time |                     |  |
|----------------------------------|---------------------|--|
|                                  |                     |  |
| Data Length                      | 2 bytes             |  |
| Data Type                        | unsigned Integer    |  |
| Minimum Value                    | -0                  |  |
| Maximum Value                    | +2 <sup>16</sup> -1 |  |
| Scaling/Unit                     | 0.1 msec            |  |
| Read                             | CP2-4               |  |
| Write                            | CP2                 |  |
| Default                          |                     |  |

When the 'drive on' and 'drive enable' bits of the master control word are set torque is activated at once, but the drive follows the command values after this waiting time has elapsed

| IDN S-0-0207 Drive off delay time |                     |
|-----------------------------------|---------------------|
|                                   |                     |
| Data Length                       | 2 bytes             |
| Data Type                         | unsigned Integer    |
| Minimum Value                     | -0                  |
| Maximum Value                     | +2 <sup>16</sup> -1 |
| Scaling/Unit                      | 0.1 msec            |
| Read                              | CP2-4               |
| Write                             | CP2                 |
| Default                           |                     |

The torque remains activated in the drive until this drive off delay time has elapsed after the 'drive off' bit of the master control word has been reset.

| IDN S-0-0300 Real Time Control (RTC) Bit 1 |                  |  |
|--------------------------------------------|------------------|--|
|                                            |                  |  |
| Data Length                                | 2 bytes          |  |
| Data Type                                  | Unsigned integer |  |
| Minimum Value                              |                  |  |
| Maximum Value                              |                  |  |
| Scaling/Unit                               |                  |  |
| Read                                       | CP2-4            |  |
| Write                                      | N/A              |  |
| Default                                    |                  |  |

This parameter defines the value of the IDN assigned to the real-time control bit 1 of the master control word.

| Bit  | Description               |
|------|---------------------------|
| 0    | 0: bit reset, 1: bit set. |
| 1-15 | Reserved                  |

| IDN S-0-0301 Allocation of Real Time Control (RTC) Bit 1 |                  |  |
|----------------------------------------------------------|------------------|--|
|                                                          |                  |  |
| Data Length                                              | 2 bytes          |  |
| Data Type                                                | Unsigned integer |  |
| Minimum Value                                            |                  |  |
| Maximum Value                                            |                  |  |
| Scaling/Unit                                             |                  |  |
| Read                                                     | CP2-4            |  |
| Write                                                    | CP2-4            |  |
| Default                                                  | 0                |  |

This parameter defines the IDN assigned to the real-time control bit 1 of the master control word. After configuring this parameter, the value of the RTC1 will reflect the status of this IDN.

| IDN S-0-0302 Real Time Control (RTC) Bit 2 |                  |  |
|--------------------------------------------|------------------|--|
|                                            |                  |  |
| Data Length                                | 2 bytes          |  |
| Data Type                                  | Unsigned integer |  |
| Minimum Value                              |                  |  |
| Maximum Value                              |                  |  |
| Scaling/Unit                               |                  |  |
| Read                                       | CP2-4            |  |
| Write                                      | N/A              |  |
| Default                                    |                  |  |

This parameter defines the value of the IDN assigned to the real-time control bit 2 of the master control word.

| Bit  | Description               |
|------|---------------------------|
| 0    | 0: bit reset, 1: bit set. |
| 1-15 | Reserved                  |

| IDN S-0-0303 Allocation of Real Time Control (RTC) Bit 2 |                  |
|----------------------------------------------------------|------------------|
|                                                          |                  |
| Data Length                                              | 2 bytes          |
| Data Type                                                | Unsigned integer |
| Minimum Value                                            |                  |
| Maximum Value                                            |                  |
| Scaling/Unit                                             |                  |
| Read                                                     | CP2-4            |
| Write                                                    | CP2-4            |
| Default                                                  | 0                |

This parameter defines the IDN assigned to the real-time control bit 2 of the master control word. After configuring this parameter, the value of the RTC2 will reflect the status of this IDN.

| IDN S-0-0304 Real Time Status (RTS) Bit 1 |         |  |
|-------------------------------------------|---------|--|
|                                           |         |  |
| Data Length                               | 2 bytes |  |
| Data Type                                 | Binary  |  |
| Minimum Value                             |         |  |
| Maximum Value                             |         |  |
| Scaling/Unit                              |         |  |
| Read                                      | CP2-4   |  |
| Write                                     | N/A     |  |
| Default                                   |         |  |

This parameter defines the value of the IDN assigned to the real-time status bit of the drive status. The drive shall maintain this bit during CP4.

| Bit  | Description               |
|------|---------------------------|
| 0    | 0: bit reset, 1: bit set. |
| 1-15 | Reserved                  |

| IDN S-0-0305 Real Time Status (RTS) Bit 1 Allocation |                                |
|------------------------------------------------------|--------------------------------|
|                                                      |                                |
| Data Length                                          | 2 bytes                        |
| Data Type                                            | Integer                        |
| Minimum Value                                        | 0                              |
| Maximum Value                                        | 65535                          |
| Scaling/Unit                                         |                                |
| Read                                                 | CP2-4                          |
| Write                                                | CP2-4                          |
| Default                                              | 0 (the RTS Bit 1 is undefined) |

This parameter defines the IDN assigned to the real-time status bit of the drive status (AT status word bit 6).

Only certain status IDN's of type binary can be assigned to this parameter. The master will stop evaluating the drive's RTS bit after it has written a new IDN to this parameter. The previously assigned RTS bit will remain valid until the drive's service channel busy bit has been set, and the master will not start evaluating the new RTS bit until the busy bit has been reset low by the drive.

| IDN S-0-0306 Real Time Status (RTS) Bit 2 |         |
|-------------------------------------------|---------|
|                                           |         |
| Data Length                               | 2 bytes |
| Data Type                                 | Binary  |
| Minimum Value                             |         |
| Maximum Value                             |         |
| Scaling/Unit                              |         |
| Read                                      | CP2-4   |
| Write                                     | N/A     |
| Default                                   |         |

This parameter defines the value of the IDN assigned to the real-time status bit of the drive status. The drive shall maintain this bit during CP4.

| Bit  | Description               |
|------|---------------------------|
| 0    | 0: bit reset, 1: bit set. |
| 1-15 | Reserved                  |

| IDN S-0-0307 Real Time Status (RTS) Bit 2 Allocation |                                |
|------------------------------------------------------|--------------------------------|
|                                                      |                                |
| Data Length                                          | 2 bytes                        |
| Data Type                                            | Integer                        |
| Minimum Value                                        | 0                              |
| Maximum Value                                        | 65535                          |
| Scaling/Unit                                         |                                |
| Read                                                 | CP2-4                          |
| Write                                                | CP2-4                          |
| Default                                              | 0 (the RTS Bit 2 is undefined) |

This parameter defines the IDN assigned to the real-time status bit 2 of the drive status (AT status word bit 7).

Only certain status IDN's of type binary can be assigned to this parameter. The master will stop evaluating the drive's RTS bit after it has written a new IDN to this parameter. The previously assigned RTS bit will remain valid until the drive's service channel busy bit has been set, and the master will not start evaluating the new RTS bit until the busy bit has been reset low by the drive.

| IDN S-0-0376 Baud Rate |                 |
|------------------------|-----------------|
|                        |                 |
| Data Length            | 2 bytes         |
| Data Type              | Usigned Integer |
| Minimum Value          |                 |
| Maximum Value          |                 |
| Scaling/Unit           |                 |
| Read                   | CP2-4           |
| Write                  | N/A             |
| Default                |                 |

This parameter defines the SERCOS baud rates supported by the drive.

| IDN S-0-0390 Diagnostic Number |                               |
|--------------------------------|-------------------------------|
|                                |                               |
| Data Length                    |                               |
| Data Type                      | 1 byte, variable length array |
| Minimum Value                  |                               |
| Maximum Value                  |                               |
| Scaling/Unit                   |                               |
| Read                           | CP2-4                         |
| Write                          | N/A                           |
| Default                        |                               |

This parameter records the last recorded drive SGDH alarm code. The error is latched in this parameter, and only cleared when the 'reset class 1 diagnostic' (IDN 99) is executed via the service channel after the manufacturer C1D has been eliminated.

| IDN S-0-0400 Home Switch |                  |
|--------------------------|------------------|
|                          |                  |
| Data Length              | 2 bytes          |
| Data Type                | Unsigned integer |
| Minimum Value            |                  |
| Maximum Value            |                  |
| Scaling/Unit             |                  |
| Read                     | CP2-4            |
| Write                    | CP2-4            |
| Default                  | 0                |

This parameter enables the home switch to be allocated to a real-time status bit (see IDN S305/307). The parameter is cleared when homing is started, and latched high when the home switch has been seen. It is only valid whilst the homing procedure command is being executed.

| Bit  | Description               |
|------|---------------------------|
| 0    | 0: bit reset, 1: bit set. |
| 1-15 | Reserved                  |

| IDN S-0-0401 Probe 1 |         |
|----------------------|---------|
|                      |         |
| Data Length          | 2 bytes |
| Data Type            | Binary  |
| Minimum Value        |         |
| Maximum Value        |         |
| Scaling/Unit         |         |
| Read                 | CP2-4   |
| Write                | N/A     |
| Default              | 0       |

This parameter contains the status of the Probe 1 input. It enables probe 1 to be assigned to the Real Time Status bit (IDN 00305). This parameter is checked and updated by the drive only if the probing cycle procedure command (IDN 00170) is active and the probe 1 enable signal (IDN 00405) is set.

| Bit  | Description                        |
|------|------------------------------------|
| 0    | 0: inactive probe, 1: active probe |
| 1-15 | Reserved                           |

| IDN S-0-0403 Position value Feedback status |                  |  |
|---------------------------------------------|------------------|--|
|                                             |                  |  |
| Data Length                                 | 2 bytes          |  |
| Data Type                                   | Unsigned integer |  |
| Minimum Value                               |                  |  |
| Maximum Value                               |                  |  |
| Scaling/Unit                                |                  |  |
| Read                                        | CP2-4            |  |
| Write                                       | N/A              |  |
| Default                                     | 0                |  |

When the drive switches the position feedback values to the coordinates referred to the machine zero point, it also sets bit 0 of this parameter. This enables the master to

determine when the actual position value is based on the zero point of the machine – and homing has been completed.

This parameter is reset when the drive controlled homing (IDN S148) is started. This IDN can be assigned to a real time status bit, and can therefore be signalled to the master in the drive status word.

| Bit  | Description                                                      |
|------|------------------------------------------------------------------|
| 0    | 0: position feedback value not referenced to machine zero point. |
|      | 1: position feedback value referenced to machine zero point.     |
| 1-15 | Reserved                                                         |

| IDN S-0-0405 Probe 1 Enable |         |
|-----------------------------|---------|
|                             |         |
| Data Length                 | 2 bytes |
| Data Type                   | Binary  |
| Minimum Value               |         |
| Maximum Value               |         |
| Scaling/Unit                |         |
| Read                        | CP2-4   |
| Write                       | CP2-4   |
| Default                     | 0       |

This parameter arms the position capture whilst the probing cycle procedure command (IDN 00170) is activated. The next required rising or falling edge on the probe input will trigger the probe and store the motor position in the appropriate parameter (IDN 00130 or 00131 depending upon the required edge.)

| IDN S-0-0407 Home Enable |                  |
|--------------------------|------------------|
|                          |                  |
| Data Length              | 2 bytes          |
| Data Type                | Unsigned integer |
| Minimum Value            |                  |
| Maximum Value            |                  |
| Scaling/Unit             |                  |
| Read                     | CP2-4            |
| Write                    | CP2-4            |
| Default                  | 0                |

This parameter defines the home enable, and hence allows it to be allocated to a realtime control bit (see IDN S301). This enables the master to control the homing status using the master control word.

The drive interprets the homing enable only while the procedure command `control unit controlled homing' (IDN S146) is active.

| Bit  | Description            |
|------|------------------------|
|      | 0: homing not enabled. |
|      | 1: homing enabled.     |
| 1-15 | Reserved               |

| IDN S-0-0409 Probe 1 Positive Edge Latched Status |         |  |
|---------------------------------------------------|---------|--|
|                                                   |         |  |
| Data Length                                       | 2 bytes |  |
| Data Type                                         | Binary  |  |
| Minimum Value                                     |         |  |
| Maximum Value                                     |         |  |
| Scaling/Unit                                      |         |  |
| Read                                              | CP2-4   |  |
| Write                                             | N/A     |  |
| Default                                           | 0       |  |

This parameter indicates whether captured position data has been latched within IDN 00130 after the rising edge of the probe 1 input signal (IDN 00401).

The position data is only stored after the probing cycle procedure command (IDN 00170) has been activated, the probe control parameter (IDN 00169) configured to trigger the probe on a rising edge, and the probe has been armed by setting the probe 1 enable (IDN 00405).

The next rising edge seen after arming the probe will trigger the probe, causing the motor position to be stored in IDN 00130, and this positive edge latched status parameter to be set. Any successive rising edges seen on the probe input are ignored until the master re-arms the probe by clearing and setting the probe 1 enable (IDN 00405).

This parameter is reset when the probing cycle procedure command is cancelled, or the probe is disabled (IDN 00405).

This parameter duplicates information found in the probe status (IDN 00179, bit 0), but is useful for assigning the probe 1 positive edge latched status to a Real Time Status (RTS) bit.

| IDN S-0-0410 Probe 1 Negative Edge Latched Status |         |  |
|---------------------------------------------------|---------|--|
|                                                   |         |  |
| Data Length                                       | 2 bytes |  |
| Data Type                                         | Binary  |  |
| Minimum Value                                     |         |  |
| Maximum Value                                     |         |  |
| Scaling/Unit                                      |         |  |
| Read                                              | CP2-4   |  |
| Write                                             | N/A     |  |
| Default                                           | 0       |  |

This parameter indicates whether captured position data has been latched within IDN 00131 after the falling edge of the probe 1 input signal (IDN 00401).

The position data is only stored after the probing cycle procedure command (IDN 00170) has been activated, the probe control parameter (IDN 00169) configured to trigger the probe on a falling edge, and the probe has been armed by setting the probe 1 enable (IDN 00405).

The next falling edge seen after arming the probe will trigger the probe, causing the motor position to be stored in IDN 00131, and this negative edge latched status parameter to be set. Any successive falling edges seen on the probe input are ignored until the master re-arms the probe by clearing and setting the probe 1 enable (IDN 00405).

This parameter is reset when the probing cycle procedure command is cancelled, or the probe is disabled (IDN 00405).

This parameter duplicates information found in the probe status (IDN 00179, bit 1), but is useful for assigning the probe 1 negative edge latched status to a Real Time Status (RTS) bit.

# Section 2 : Proprietary (Product Specific) SERCOS IDNs

Note that proprietary (or product specific) IDNs are often displayed in the format P-Z-YYYY, where the absolute SERCOS number is defined as 0x8000 (hex) + 0xZ000 (hex) + YYYY (dec).

## Drive (PnXXX) Parameters

The Drive PnXXX parameter numbers map directly to the base of the product specific SERCOS IDN range.

| SERCOS IDN | Drive          | Notes                                         |
|------------|----------------|-----------------------------------------------|
|            | Identification |                                               |
| 32768      | Pn000          | Function Selection Basic Switches             |
| 32769      | Pn001          | Function Selection Application Switches 1     |
| 32770      | Pn002          | Function Selection Application Switches 2     |
| 32771      | Pn003          | Function Selection Application Switches 3     |
| 32772      | Pn004          | Fixed Constants                               |
| 32773      | Pn005          | Fixed Constants                               |
|            |                |                                               |
| 33024      | Pn100          | Speed Loop Gain                               |
| 33025      | Pn101          | See Ref [2]                                   |
| 33059      | Pn123          |                                               |
|            |                |                                               |
| 33280      | Pn200          | Position Control Reference Selection Switches |
| 33281      | Pn201          | See Ref [2]                                   |
| 33288      | Pn208          |                                               |
|            |                |                                               |
| 33536      | Pn300          | See Ref [2]                                   |
| 33544      | Pn308          |                                               |
|            |                |                                               |
| 33792      | Pn400          | See Ref [2]                                   |
| 33801      | Pn409          |                                               |
|            |                |                                               |
| 34048      | Pn500          | See Ref [2]                                   |
| 34066      | Pn512          |                                               |
|            |                |                                               |
| 34304      | Pn600          | Regenerative Resistor Capacity                |
| 34305      | Pn601          | Fixed Constant                                |
|            |                |                                               |

## **Drive Functions**

Certain drive functions map to the product specific SERCOS IDN range, starting at address 40960 (0xA000)..

| SERCOS IDN | Drive<br>Identification | Notes |
|------------|-------------------------|-------|
| 40960      |                         |       |
|            |                         |       |
|            |                         |       |
|            |                         |       |
|            |                         |       |
|            |                         |       |
|            |                         |       |

| IDN P-4-0000 (49152) Encoder Type |                  |  |
|-----------------------------------|------------------|--|
|                                   |                  |  |
| Data Length                       | 2 bytes          |  |
| Data Type                         | Unsigned integer |  |
| Minimum Value                     |                  |  |
| Maximum Value                     |                  |  |
| Scaling/Unit                      |                  |  |
| Read                              | CP2-4            |  |
| Write                             | N/A              |  |
| Default                           | 0                |  |

This parameter defines the encoder type, where 0: incremental, and 1: absolute.

| IDN P-4-0001 (49153) DIP Switch Status |                  |  |
|----------------------------------------|------------------|--|
|                                        |                  |  |
| Data Length                            | 2 bytes          |  |
| Data Type                              | Unsigned integer |  |
| Minimum Value                          |                  |  |
| Maximum Value                          |                  |  |
| Scaling/Unit                           |                  |  |
| Read                                   | CP2-4            |  |
| Write                                  | CP2-4            |  |
| Default                                | 0                |  |

This parameter returns the status of the drive DIP switches.

| IDN P-4-0002 (49154) Software Reset |                            |  |
|-------------------------------------|----------------------------|--|
|                                     |                            |  |
| Data Length                         | 2 bytes                    |  |
| Data Type                           | Binary (Procedure Command) |  |
| Minimum Value                       |                            |  |
| Maximum Value                       |                            |  |
| Scaling/Unit                        |                            |  |
| Read                                | CP2-4                      |  |
| Write                               | CP2-4                      |  |
| Default                             | 0                          |  |

This procedure command performs a software reset of the drive.

| IDN P-4-0100 (49252) Probe 1 Trigger Input |         |  |
|--------------------------------------------|---------|--|
|                                            |         |  |
| Data Length                                | 2 bytes |  |
| Data Type                                  | Binary  |  |
| Minimum Value                              |         |  |
| Maximum Value                              |         |  |
| Scaling/Unit                               |         |  |
| Read                                       | CP2-4   |  |
| Write                                      | CP2-4   |  |
| Default                                    | 0       |  |

This parameter determines which trigger input is used to latch probe 1.

| Bit  | Description                           |
|------|---------------------------------------|
| 0-1  | See Probe1 trigger input table below. |
| 2-15 | Reserved                              |

### Probe 1 Trigger Input Table

| Value | Description              |
|-------|--------------------------|
| 0     | Origin (Z) mark.         |
| 1     | EXT1 (connection CN1-44) |
| 2     | EXT2 (connection CN1-45) |
| 3     | EXT3 (Reserved)          |

| IDN P-4-0256 (49408) Homing Mode |         |  |
|----------------------------------|---------|--|
|                                  |         |  |
| Data Length                      | 2 bytes |  |
| Data Type                        | Binary  |  |
| Minimum Value                    | 0       |  |
| Maximum Value                    | 1       |  |
| Scaling/Unit                     | N/A     |  |
| Read                             | CP2-4   |  |
| Write                            | CP2-4   |  |
| Default                          | 0       |  |

This parameter defines the homing mode used whilst the Drive Controlled Homing Procedure Command (IDN 00148) is activated.

### Homing Mode Table

| Value | Description                                                              |
|-------|--------------------------------------------------------------------------|
| 0     | Homing routine as defined by the SERCOS specification (default).         |
| 1     | Special Profile 1: Search for home switch at Homing Velocity. After      |
|       | recognising the home switch, decelerate to zero, turn direction and move |
|       | back off the home switch at the Homing Creep Velocity. Turn direction    |
|       | again, and move to the z-mark at the Homing Creep Velocity. After        |
|       | recognising the z-mark, decelerate to a standstill and signal the homing |
|       | procedure command has been completed.                                    |

| IDN P-4-0257 (49409) Homing Home Switch Input |         |  |
|-----------------------------------------------|---------|--|
|                                               |         |  |
| Data Length                                   | 2 bytes |  |
| Data Type                                     | Binary  |  |
| Minimum Value                                 | 0       |  |
| Maximum Value                                 | 6       |  |
| Scaling/Unit                                  | N/A     |  |
| Read                                          | CP2-4   |  |
| Write                                         | CP2-4   |  |
| Default                                       | 0       |  |
|                                               |         |  |

This parameter defines which of the CN1 input signals to use as the home switch trigger whilst the Drive Controlled Homing Procedure Command (IDN 00148) is activated.

#### Home Switch Table

| Value | Description |
|-------|-------------|
| 0     | SIO         |
| 1     | SI1         |
| 2     | SI2         |
| 3     | SI3         |
| 4     | SI4         |
| 5     | SI5         |
| 6     | SI6         |

| IDN P-4-0258 (49410) Homing Creep Velocity |                                          |  |  |
|--------------------------------------------|------------------------------------------|--|--|
|                                            |                                          |  |  |
| Data Length                                | 4 bytes                                  |  |  |
| Data Type                                  | Integer                                  |  |  |
| Minimum Value                              | -2 <sup>31</sup>                         |  |  |
| Maximum Value                              | +2 <sup>31</sup> -1                      |  |  |
| Scaling/Unit                               | 256 <sup>th</sup> encoder edges per msec |  |  |
| Read                                       | CP2-4                                    |  |  |
| Write                                      | CP2-4                                    |  |  |
| Default                                    | 0                                        |  |  |

This parameter defines the homing creep velocity of the drive used whilst running the Drive Controlled Homing Procedure Command (IDN 00148).

| Scaling Type     | IDN   |
|------------------|-------|
|                  | 00044 |
| Scaling Factor   | IDN   |
|                  | 00045 |
| Scaling Exponent | IDN   |
|                  | 00046 |

Only the 'no scaling' option is supported.

| IDN P-4-0259 (49411) Homing Time Constant |                       |  |
|-------------------------------------------|-----------------------|--|
|                                           |                       |  |
| Data Length                               | 2 bytes               |  |
| Data Type                                 | Unsigned decimal      |  |
| Minimum Value                             | 0                     |  |
| Maximum Value                             | 65535                 |  |
| Scaling/Unit                              | 500usec per increment |  |
| Read                                      | CP2-4                 |  |
| Write                                     | CP2-4                 |  |
| Default                                   | 100                   |  |

This parameter defines the time which the drive waits for the position control loop of the drive to settle after having homed.

| IDN P-4-0512 (49664) Linear position data scaling numerator |                     |  |  |  |
|-------------------------------------------------------------|---------------------|--|--|--|
|                                                             |                     |  |  |  |
| Data Length                                                 | 4 bytes             |  |  |  |
| Data Type                                                   | Unsigned decimal    |  |  |  |
| Minimum Value                                               | 1                   |  |  |  |
| Maximum Value                                               | 2 <sup>32</sup> - 1 |  |  |  |
| Scaling/Unit                                                |                     |  |  |  |
| Read                                                        | CP2-4               |  |  |  |
| Write                                                       | CP2-3               |  |  |  |
| Default                                                     | 8192                |  |  |  |

This parameter defines the number of encoder edges input to the scaling function for all position data in the drive when in linear data scaling mode.

| IDN P-4-0513 (49665) Linear position data scaling denominator |                     |  |  |  |
|---------------------------------------------------------------|---------------------|--|--|--|
|                                                               |                     |  |  |  |
| Data Length                                                   | 4 bytes             |  |  |  |
| Data Type                                                     | Unsigned decimal    |  |  |  |
| Minimum Value                                                 | 1                   |  |  |  |
| Maximum Value                                                 | 2 <sup>32</sup> - 1 |  |  |  |
| Scaling/Unit                                                  |                     |  |  |  |
| Read                                                          | CP2-4               |  |  |  |
| Write                                                         | CP2-3               |  |  |  |
| Default                                                       | 8192                |  |  |  |

This parameter defines the preferred units output from the scaling function for all position data in the drive when in linear data scaling mode.

#### **Drive Monitor Modes**

The Drive monitor modes map to the product specific SERCOS IDN range, starting at address 53248 (0xD000).

| SERCOS IDN | Drive          | Notes                           |  |  |  |  |
|------------|----------------|---------------------------------|--|--|--|--|
|            | Identification |                                 |  |  |  |  |
| 53248      | Un000          | Speed Feedback                  |  |  |  |  |
| 53249      | Un001          | Speed Command                   |  |  |  |  |
| 53250      | Un002          | Torque Command                  |  |  |  |  |
| 53251      | Un003          | Rotation Angle 1                |  |  |  |  |
| 53252      | Un004          | Rotation Angle 2                |  |  |  |  |
| 53253      | Un005          | Input Signal Monitor            |  |  |  |  |
| 53254      | Un006          | Output Signal Monitor           |  |  |  |  |
| 53255      | Un007          | Command Pulse Speed             |  |  |  |  |
| 53256      | Un008          | Deviation error counter         |  |  |  |  |
| 53257      | Un009          | Accumulated load rate           |  |  |  |  |
| 53258      | Un00A          | Regenerative load rate          |  |  |  |  |
| 53259      | Un00B          | Power consumed by DB resistance |  |  |  |  |
| 53260      | Un00C          | Command Pulse Counter LSB       |  |  |  |  |
| 53261      | Un00C          | Command Pulse Counter MSB       |  |  |  |  |
| 53262      | Un00D          | Feedback Pulse Counter LSB      |  |  |  |  |
| 53263      | Un00D          | Feedback Pulse Counter MSB      |  |  |  |  |
|            |                |                                 |  |  |  |  |
| 54550      | Fn011-E        | Encoder Type/Resolution         |  |  |  |  |
|            |                |                                 |  |  |  |  |

# **Software History**

| Version  | Date           | Changes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|----------|----------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 00.00.33 | 22 Oct<br>2008 | <ol> <li>BUGFIX: The reset C1D procedure command (IDN 00099) will now correctly<br/>run the drive reset process when an 'excessive position deviation' (bit 11)<br/>error is raised via the drive's A.D0 error. (This bug was introduced when the<br/>firmware started to use the drive's FE in v00.00.30, and occured because this<br/>error is considered to be a C1D and not a MC1D.)</li> <li>BUGFIX: The unit now correctly homes when using 17bit encoders and a<br/>modulo. Previously, if the drive moved more than one turn whilst searching<br/>for the home switch it would jump a half-turn on completing the homing<br/>routine. This error was discovered when running with the Fagor CNC8070<br/>master.</li> <li>Previously, there were two methods of raising the position error C1D - either<br/>by our own following distance GT monitoring window check, or if the drive<br/>raises an A.D0 error. However, our own check has been removed, and we<br/>now rely on the drive's own position error check based on parameter Pn505.</li> <li>Values written to IDN S-0-00159 (monitoring window) are now scaled and<br/>written directly in drive parameter Pn505. This enables the master to define<br/>the size of the position monitoring window, which is then checked by the<br/>drive. The drive will raise the error A.D0 if the monitoring window size is<br/>exceeded by the FE. This error is tracked by the P730, and raised as a<br/>'excessive position deviation' error - bit 11 of the C1D's.</li> </ol> |
| 00.00.32 | 10 Apl<br>2008 | <ol> <li>BUGFIX: the modulo (IDN S-0-0103) was incorrectly being applied to the following distance (IDN S-0-0189). The following distance is still scaled according to the data scaling (IDN S-0-0076) but the modulo is no longer applied.</li> <li>BUGFIX: the polarity inversion IDN (IDN S-0-0055) was incorrectly being applied to the position cmd/feedback when used with a modulo. This has been corrected for this configuration. The polarity inversion is not correctly applied to Rot pref scaled data.</li> <li>BUGFIX: homing now reads a 32bit latched value, because we were incorrectly calculating the command offset after homing when used with 17bit encoders (since we were only including the ls 16 bits.)</li> <li>Backlash compensation (reversal clearance) has been addded. The backlash value is instantly added to the setpoint and subtracted from the feedback whenever there is a change in the direction of motion.</li> </ol>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 00.00.31 | 25 Jan<br>2008 | <ol> <li>BUGFIX: corrected support for linear preferred scaling modulo.</li> <li>BUGFIX: corrected preferred scaling support for ref distance (S-0-0052) and<br/>ref offset (S-0-0150) IDNs used when homing.</li> <li>Linear data scaling calibration changed (see notes, and manual description of<br/>IDNs 49664 (P-4-0512) and 49665 (P-4-0513)).</li> </ol>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 00.00.30 | 18 Dec<br>2007 | <ol> <li>BUGFIX: The 'invert position feedback value' flag in the 'Position Polarity<br/>Parameters' (IDN S-0-0055) was obeyed by the Position Feedback (IDN S-0-<br/>0051) in the cyclic data but not when read over the service channel. This has<br/>been fixed.</li> <li>The Velocity Feedback IDN (S-0-0040) now returns the change in the number<br/>of edges per msec.</li> <li>This firmware build now uses the drive's FE value, and does not calculate its<br/>own from the setpoint/feedback difference. This value is returned in IDN S-<br/>0-0189, and is the following distance in number of edges.</li> <li>Homing now responds to bit 1 of IDN S-0-0148 by ramping down to zero<br/>speed.</li> <li>Primitive backlash compensation added. This uses IDN S-0-0058 (reversal<br/>clearance), and simply adds or subtracts the value held by this IDN onto the<br/>setpoint when there is a change in direction. The value is scaled if rotational<br/>or linear scaling is being used. This compensation only works in position<br/>mode, and not during homing.</li> </ol>                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 00.00.29 | 26 Nov<br>2007 | <ol> <li>New drive enable/disable algorithm. Drive will only be enabled when bits 15<br/>(drive on (powered)) and 14 (drive enabled) of the MDT are set. If either bit<br/>is cleared to zero the drive will be disabled.</li> </ol>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |

| 00.00.28 | 1 Oct<br>2007  | 1.       | Initial support for linear position data scaling with preferred units. ALPHA version only. Bugs to be reported to Trio Motion Technology Development department.                                                                                           |                                          |                                   |                        |                                |                                                                                                                                                          |
|----------|----------------|----------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------|-----------------------------------|------------------------|--------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------|
| 00.00.27 | 26 Sep<br>2007 | 1.       | Support for new homing profile requested by Omron. Search for the<br>homing velocity, when seen (or if started on the switch) use creep<br>and change direction, back-off, change direction again and move<br>switch. Set IDN 49408 to 2 for this profile. |                                          |                                   |                        | switch) use creep velocity     |                                                                                                                                                          |
| 00.00.26 | 4 May<br>2007  | 1.<br>2. | return the curren<br>feedback error A.<br>drive has raised t<br>value for 0x51).                                                                                                                                                                           | t drive ala<br>C9, the IDI<br>he overspe | rm code.<br>N will ho<br>ed error | . EG,<br>Id 20<br>A.51 | if the d<br>1 (deci<br>, the d | ow of type 4 byte, and will<br>drive has raised the encoder<br>mal value for 0xC9). If the<br>rive will return 81 (decimal<br>uested by TrioUS customer. |
|          |                |          | IDN Description                                                                                                                                                                                                                                            |                                          |                                   | Size                   | Notes                          |                                                                                                                                                          |
|          |                |          | 34 secondary o<br>(Class C)                                                                                                                                                                                                                                | peration m                               | ode 2                             | 2                      | (1)                            |                                                                                                                                                          |
|          |                |          | 35 secondary o<br>(Class C)                                                                                                                                                                                                                                | peration m                               | ode 3                             | 2                      | (1)                            |                                                                                                                                                          |
|          |                |          | 79 rotational p<br>(Class C)                                                                                                                                                                                                                               |                                          |                                   | 4                      | (2)                            |                                                                                                                                                          |
|          |                |          | 93 Torque force<br>(Class C)                                                                                                                                                                                                                               | -                                        | actor                             | 2                      | (2)                            |                                                                                                                                                          |
|          |                |          | 94 Torque force<br>exponent (C                                                                                                                                                                                                                             | lass C)                                  |                                   | 2                      | (2)                            |                                                                                                                                                          |
|          |                |          | 161 Acceleration<br>factor (Class                                                                                                                                                                                                                          | s C)                                     |                                   | 2                      | (2)                            |                                                                                                                                                          |
|          |                | 2        | 162 Acceleration<br>exponent (C                                                                                                                                                                                                                            |                                          | ling                              | 2                      | (2)                            |                                                                                                                                                          |
|          |                | 3.       | (1)IDNs 34 and 35                                                                                                                                                                                                                                          | reflect th                               | e value c                         | of IDN                 | 133.                           |                                                                                                                                                          |
|          |                |          |                                                                                                                                                                                                                                                            |                                          |                                   |                        |                                | tever is written to it.                                                                                                                                  |
| 00.00.25 | 13 Apr<br>2007 | 1.       | Improved support                                                                                                                                                                                                                                           | for Diagno                               | ostic Mes<br>Diagnos              | -                      | IDN:                           |                                                                                                                                                          |
|          |                |          | Drive State                                                                                                                                                                                                                                                |                                          | Message                           |                        |                                |                                                                                                                                                          |
|          |                |          | Drive not yet in t<br>hence not able t<br>a motor yet                                                                                                                                                                                                      | ·                                        | "Drive n                          | iot re                 | ady."                          |                                                                                                                                                          |
|          |                |          | Drive in CP4, but<br>power not applie<br>drive not enable                                                                                                                                                                                                  | ed and                                   | "Drive lo<br>main po<br>applied   | wer                    |                                |                                                                                                                                                          |
|          |                |          | Drive in CP4, ma<br>applied but drive<br>enabled                                                                                                                                                                                                           |                                          | "Drive r<br>not ena<br>power a    | bled,                  | main                           |                                                                                                                                                          |
|          |                |          | Drive in CP4, ma<br>applied and drive                                                                                                                                                                                                                      |                                          | "Drive r<br>enablec<br>power i    | l and                  |                                |                                                                                                                                                          |
|          |                |          | If the main powe<br>applied whilst in<br>state, drive will                                                                                                                                                                                                 | above<br>raise C1D                       | "Drive ii                         | n erro                 | or."                           |                                                                                                                                                          |
|          |                |          | If C1D is cleared<br>executing IDN 99<br>drive will return<br>appropriate state                                                                                                                                                                            | ), the<br>to the                         |                                   |                        |                                |                                                                                                                                                          |

| 00.00.24 | 5 Mar<br>2007  | 1.<br>2.<br>3.<br>4.                                       | BUGFIX: It was possible for the unit to raise a false 'out of position' C1D when<br>run in position control mode with a modulo. This might occur if the following<br>error was calculated at a point in time when either the setpoint or feedback<br>wrapped (but not both), hence producing an apparent large FE.<br>The drive shall now be disabled whenever a C1D is raised. Previously it was<br>possible for a C1D to be raised whilst the drive was enabled, and for the<br>drive not to be automatically disabled.<br>When reading the position feedback (IDN 51) over the service channel when<br>there was a position modulo (IDN 103) - enabled by setting bit 7 in the pos<br>data scaling (IDN 76), the unit was returning an absolute and not a modulo'd<br>value. This has been corrected so the modulo'd value is now returned.<br>The handling of the position setpoint when there is a modulo has been re-<br>worked, to fix the problems listed above, and so is quite different from<br>earlier versions.<br>This version was tested with the Beckhoff TwinCAT, and Trio and<br>conformizer.                                                                                                                                                                                                                                                                                                                                                |
|----------|----------------|------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 00.00.23 | 2 Feb<br>2007  | 1.                                                         | AT Application telegrams can now include any 2 or 4 byte IDNs in the cyclic data. It should be noted that IDN 187 does not list all these IDNS, but only those for which cyclic support has been is optimised.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 00.00.22 | 31 Jan<br>2007 | <ol> <li>1.</li> <li>2.</li> <li>3.</li> <li>4.</li> </ol> | <ul> <li>BUGFIX: it is now possible to read procedure commands at any time (as per normal data IDNs), and they will return the status of the procedure command, ie <ul> <li>Bit 0 = 1: proc cmd set, 0: proc cmd not set</li> <li>Bit 1 = 1: execution enabled, 0: execution interrupted</li> <li>Bit 2 = 1: proc cmd not yet executed, 0: proc cmd executed correctly</li> <li>Bit 3 = 1: error, proc cmd execution not possible, 0: no proc cmd error</li> <li>Bit 7-4 = reserved</li> <li>Bit 15-9 = reserved</li> </ul> </li> <li>Drive will now monitor the power stage, and raise a C1D undervoltage error if the master attempts to enable the drive when the power stage is not powered, or if the power is removed when the drive is enabled.</li> <li>Added more complete support for the drive's 'ready to operate' bits of the AT status word. These bits identify when the drive is ready to be enabled, by reflecting the status of the drive logic and whether power has been applied to the drives power stage.</li> <li>Drive controlled homing - added support for homing only to the home switch (when using the default profile.) Note that the drive must be configured to evaluate an external input ( by writing the appropriate values to drive parameters Pn50A, Pn50B, Pn511 - and cycling power to the drive), and the drive homing proprietary IDNs must be configured before the homing procedure command is executed.</li> </ul> |
| 00.00.21 | 11 Dec<br>2006 | 1.<br>2.                                                   | Added support for torque control mode - with no data scaling, hence<br>setpoints must be in 0.1% units.<br>BUGFIX: drive controlled homing, was using the latched position and not the<br>final stop position (after decelerating to a standstill) as the machine zero<br>point.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 00.00.20 | 24 Oct<br>2006 | 1.<br>2.<br>3.<br>4.<br>5.<br>6.                           | Added initial support for velocity data scaling with preferred scaling.<br>Added initial support for torque control mode - with no data scaling, hence<br>setpoints must be in 0.1% units.<br>Enabled the modulo (S-0-0103) to work with position values.<br>BUGFIX: fixed a bug - introduced after v0.0.13 - which stopped registration<br>from working.<br>If a drive error arises, the firmware records the error (as before) but does<br>not now reset into CP0.<br>Added support for bits 5 and 6 of the homing parameter (S-0-0147). These<br>bits determine whether an external home switch and z-mark (respectively)<br>are evaluated during drive controlled homing. Hence, the drive can now be<br>homed to only the z-mark, or only the external switch.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 00.00.19 | 27 Sep         | 1.                                                         | No longer maintain the 'in-position' (C3D bit 6) and 'excessive position                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |

|          | 2006           | <ol> <li>3.</li> <li>4.</li> <li>5.</li> <li>6.</li> <li>7.</li> <li>8.</li> </ol>             | deviation' flags (C1D bit 11) when not in position control mode.<br>Added (initial) support for the preferred position data scaling. Used when in<br>the position control mode (using position command with position feedback.)<br>Design Note: Now read the encoder resolution from the drive during startup,<br>and use this value for the preferred scaling calculations.<br>Design Note: Removed the m_ndebug structures to retrieve memory.<br>BUGFIX: 4 byte IDNs will correctly return the 'not supported' error response<br>when master attempts to read their name or units data elements.<br>BUGFIX: when running with SERCOS cycle times of 4,8,16msec the drive<br>update interpolator was not working properly. (This is the mechanism used<br>to interpolate the setpoints received from the master at the SERCOS cycle<br>time rate, and written to the drive every 500usec.) This produced a visible<br>ripple on the speed profile (viewed using SigmaWin software, or a scope<br>attached to the monitor points on the front of the drive next to the battery).<br>Note that the 500usec,1msec, 2msec update rates were fine before and still<br>are.<br>BUGFIX: several signed 4byte IDNs were reporting their data type (in the IDN<br>attribute, element 3 in the IDN data block structure) as unsigned (data type<br>1). This was corrected to (signed) int (data type 2).<br>Added support for the 'decimal point' (bits 27-24) in the IDN attribute<br>(element 3 in the IDN data block). This is used as 'additional display<br>information'. This value will not change from 0, to 4 for various position and<br>velocity IDNs when data scaling is used with preferred scaling, and 1 for<br>torque IDNs.<br>BUGFIX: corrected response from slave when the name and units elements of<br>the IDN data block are read by the master - drive replies with error code,<br>because we do not support these (optional) element types. |
|----------|----------------|------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 00.00.18 | 5 Sep<br>2006  | 1.                                                                                             | <ul> <li>Additional support for drive controlled homing. After drive has homed (moved from the switch, to the z-mark and decelerated to zero) it sets the encoder feedback value to be equal to the refdist + refoffset + distance between the(latched) z-mark and current (stop) position. It also sets the position cmd to be equal to this value, and calculates a setpoint offset - used between the drive and P730 - to be added to all subsequent setpoint cmds from the master.</li> <li>Changes required to support the Pack Profile Specification : <ol> <li>Changed IDNs 11,12,13,14 reported data type from unsigned int to binary.</li> <li>Changed status of IDN 32 in CP3 and CP4 from read only to read/write. It does not make sense to change the operation mode in these phases - since you will have to cycle power to the drive if you change the drives control mode before it takes affect - but was required by the Pack Profile Specification.</li> <li>Firmware now calculates the demanded speed (when in position and velocity control modes) and monitors this value. If the demanded velocity value exceeds the 'bipolar velocity limit value' (IDN S-0-0091) the firmware will set C3D (IDN S-0-0013) bit 5 (n command greater than n limit).</li> </ol></li></ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 00.00.17 | 25 Aug<br>2006 | 1.                                                                                             | BUGFIX: Absolute encoders - corrected use of encoders with more than 16 bits from power-on. It was found that a 17bit absolute encoder would occasionally return a position a half turn out from the last recorded value before the power was cycled.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 00.00.16 | 04 Aug<br>2006 | <ol> <li>1.</li> <li>2.</li> <li>3.</li> <li>4.</li> <li>5.</li> <li>6.</li> <li>7.</li> </ol> | Correctly reset to CPO when drive C1D occurs, and reset to show CPO on the green leds.<br>Correct error information recorded by the interface status IDN S-0-0014.<br>Reset required operation data list (IDN S-0-0021) when unit returns to CPO.<br>Tightened MDT timing tolerance, checked when in CP3 and CP4 (was +200usec!, now -4 usec to +8 usec).<br>Use SERCON ASIC'S NMSTERR data value for the MST error counter IDN (S-0-0028). Previously we had used our own counter.<br>Use SERCON ASIC'S INT_MSTMISS to identify MST error, and INT_RERR to identify MDT errors. Previously had checked several flags.<br>BUGFIX: Absolute encoders - corrected use of multi-turn register when initially caculating encoder feedback position from poweron.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |

| 00.00.15 | 23 May<br>2006 | 1. | BUGFIX: zero following difference (error) S-0-0189 whilst running drive controlled homing. |
|----------|----------------|----|--------------------------------------------------------------------------------------------|
| 00.00.14 | 01 Jul<br>2005 | 1. | Initial support for drive controlled homing added.                                         |
| 00.00.13 | 14 Mar<br>2005 | 1. | First production release.                                                                  |